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Abstract—Although intelligent systems outperform hu-
man experts in a variety of tasks, deployment in high-
stakes domains such as medicine or finance are still a
great risk due to their inherent inexplainability, and lack
of trust. This is especially prevalent for deep and stochas-
tic approaches. Additionally, while deep approaches are
extremely powerful, their training is time-consuming. The
first part of this report therefore explores techniques for
explaining a policy to a human by providing a meaningful
summary of the agent’s behavior. Subsequently, methods
for interactive learning are studied in detail which tackle
the problem of long training times by incorporating human
feedback. This literature review revealed that these two
areas have developed independently. However, combining
both may be advantageous and provide substantial insights
for development in both fields.

I. INTRODUCTION

While it has been shown that Intelligent Agents (IAs)
outperform humans in various tasks, human collabora-
tion and trust are hardly achievable with agents that
do not explain the rationales behind their actions [1].
Even though humans can become accustomed to a
robot’s actions after some time, explanations of them
can drastically speed up this process [2]. This is espe-
cially important in high-stakes disciplines like finance,
medicine, and autonomous driving. However, generating
such explanations is extremely difficult, especially in
the era of (Deep) Reinforcement Learning ((D)RL) and
stochastic policy representations and remains an active
area of research. The first part of this report deals
with special kinds of Explainable AI (XAI) frameworks,
namely policy summaries. Instead of explaining im-
mediate actions taken, policy summarization attempts
to give a global overview of the policy. This enables
the human collaborator to judge whether the policy is
pertinent for a task at hand and whether it is trustworthy.
This framework and various realizations are discussed in
section III.

Another challenging problem arising when using data-
driven methods for building control policies is the enor-
mous amount of interaction with the environment needed
to learn useful control laws. As humans usually hold
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Figure 1: Illustration of the importance metric used by
HIGHLIGHTS [6] in the game Mrs. Pacman [7]. (a) is a
scene of low importance as all applicable actions (going
up, left, or right) lead to states of similar value. (b) is
instead of high importance as choosing the "up"-action
would be severe. Taken from Amir and Amir, "HIGH-
LIGHTS: Summarizing Agent Behavior to People." [6]

great knowledge about the world and about the task
a robot has to learn to solve, this raises the question
of whether it would be helpful to incorporate their
knowledge into the training process. This idea lead to
the development of a family of methods for imitat-
ing policies from (human) demonstrations, for example
Behavioral Cloning (BC) [3] and Inverse Reinforcement
Learning (InvRL) [4], [5]. However, this requires an
optimal execution of the task. As this is not always
possible, it is desirable to interactively teach an agent
while it is learning without having to provide trajectories
of an optimal policy beforehand. Different methods for
interactive learning are explored in the second part of
this report, section IV.

Throughout the report, connections are drawn between
the two fields. Additionally, the literature review revealed
some research gaps that are also highlighted. Finally,
the findings and the aforementioned research gaps are
summarized and discussed in section V.



II. RELATED WORK

Previous surveys have been conducted that include
policy summarization and interactive learning [8]–[11].
Cruz and Igarashi [8] published a survey solely on
Interactive Reinforcement Learning (IntRL) methods.
They identify and describe guidelines for designing inter-
actions to provide hints for approaching future research.
Also, they highlight open challenges in IntRL that should
be tackled in the future. Najar and Chetouani [9] con-
ducted a survey on RL with human advice, too. They
provide an overview over the taxonomy used in IntRL
and highlight several existing methodologies to interpret
the advice provided by a human. Both surveys give a
general overview of the field while this report focuses on
accelerating training of an IA using human reinforcement
signals. Puiutta and Veith [12] focus on Explainable
RL (XRL) in general and give an overview of current
methods. On the other hand, Wells and Bednarz [11] give
a thorough overview over a multitude of fields in XRL,
featuring policy summarization and human collaboration
in particular. These two surveys are close to this work.
However, this report focuses merely on policy summaries
and interactive learning and not XRL in general.

III. POLICY SUMMARIZATION

In order to deploy IAs in high-stakes domains such
as autonomous driving, it is necessary to understand the
rationale behind their actions. However, explanations of
single actions (local explanations) are not sufficient for
grasping the policy as a whole. While such explanations
are helpful in domains where actions are taken at decent
pace (picking university courses, for example [13]), real-
time tasks require a more general view that can be
studied before deployment. This shifts the view towards
policy summarization techniques which aim to provide
global explanations.

This section primarily explores techniques based on
trajectory extraction (subsection III-A). Trajectory ex-
traction methods summarize the policy by providing
meaningful examples of trajectories that the policy out-
puts. These can, for example, be trajectories executed
during training or trajectories generated only for the sake
of using them in a summary.

Other methods (not explored in detail here) are textual
summaries [13]–[15] which, while being more flexible
and diverse, mostly focus on generating local explana-
tions rather than providing a global policy summary.
While this allows flexible knowledge acquisition, a user
has to think about situations that might occur to query
the actions that will be taken beforehand. This issue can

be circumvented by pre-computing all possible queries
to generate a global summary, but this approach is only
feasible if the number of actions is manageable.

Additionally, a variety of other approaches are exam-
ined in subsection III-B, some of which are a combina-
tion of the aforementioned methods.

A. Trajectory Extraction

The most challenging task in extracting meaningful
trajectories from a collection of trajectories is to decide
what meaningful means. This definition is the principal
distinctive feature between the presented approaches. In
the following, three approaches to policy summarization
via trajectory extraction are presented: the first [16]
relies on hand-crafted metrics to assess how interesting
a trajectory is and the second and third [17], [18]
leverage Imitation Learning (IL) for finding trajectories
that optimally support learning.

1) Min-Max Span of Q-Function: The HIGHLIGHTS
algorithm [6] uses the notion of state importance [19]
defined as the difference between the maximum and
minimum value of the Q-function:

Iπ(s) := max
a∈A

Qπ(s, a)− min
a∈A

Qπ(s, a).

An advantage of this metric is that it is easy to grasp: if
some state s is of high importance, i.e., the min-max
span is wide, it is of high relevance which action is
chosen since it potentially has drastic consequences. An
illustration of this metric is given in Figure 1.

The importance metric is then leveraged as follows:
instead of just extracting states that exceed some impor-
tance threshold Is, a fixed number of states before and
after the critical state are extracted, forming a trajectory.
This process is repeated until a fixed number of simula-
tions have been run and the most important trajectories
are kept (the trajectory generation takes place after
training and non-important states can be discarded early
making the algorithm less costly in terms of memory
usage).

Amir and Amir [6] conducted a user study comparing
the summaries generated by HIGHLIGHTS against two
baselines: one which presents the first k trajectories that
take place and one where k random trajectories from the
agent’s buffer are shown. The participants were asked to
a) select which agent they would pick to play on their
behalf and rate their confidence and b) rate their opinions
on the helpfulness of the summaries. They found that
the accuracy of selecting the better agent as well as
the confidence of doing so was significantly elevated
using HIGHLIGHTS summaries. Similar results where



Figure 2: Autonomous driving environment used for the
user study in [17]. The autonomous agent is depicted
in yellow. It is expected that the right trajectory is
less meaningful as both aggressive and defense driving
styles would execute such a policy. Conversely, the left
trajectory conveys more information and hence should be
preferred for a meaningful policy summary. Taken from
Huang et al., "Enabling Robots to Communicate Their
Objectives." [17]

found regarding the preference for the HIGHLIGHTS
summaries.

One of the major advantages of HIGHLIGHTS com-
pared to the approaches presented below is its inherent
simplicity: the amount of work to be done and code to
be written is rather minimal allowing rapid deployment.

2) Inverse Reinforcement Learning: A different ap-
proach for selecting the summarization trajectories was
proposed by Huang et al. [17]. Building on the hy-
pothesis that the objective function itself conveys the
most information (as an optimal policy constantly aims
to maximize the objective), an algorithmic teaching
approach is used to extract the trajectories. That is, a
model of human inference is leveraged to assess the
helpfulness of a trajectory.

To build this model, Huang et al. [17] first assume
that the reward function is a linear function of known
features governed by some parameters θ which shall be
inferred1. Second, a Bayesian inference model over the
parameters θ and the set of example trajectories2 T is
employed to model a human’s belief update:

P (θ | T ) ∝ P (θ)P (T | θ) = P (θ)
∏
τ ∈T

P (τ | θ).

1Note that, although it is framed as the user inferring the parameters
itself, the user is not required to name concrete numbers but just has
to have a basic understanding of the weighting.

2Note that the trajectories are assumed to be optimally executed
in the respective circumstances. Hence, it can, as done by Huang et
al. [17], also be stated that the problem is to find a set of environments
E such that executing the optimal policy on each of the environments
would yield T . This report sticks to the wording of selecting optimal
trajectories for consistency.

To find the trajectories best suited for inferring the
objective, the posterior over the actual parameters θ∗ is
maximized w.r.t. the set of trajectories T .

Modeling the likelihood P (τ | θ) can be done in a
straightforward fashion using exact-inference InvRL [4],
[17]. However, while machines are capable of perform-
ing exact-inference, humans likely perform approximate-
inference [17]. Hence, Huang et al. [17] tested six
approximate-inference models “by manipulating two fac-
tors in a 2-by-3 factorial design” [17] in addition to
InvRL.

The first factor is a deterministic versus probabilistic
effect on selecting θ: in InvRL, a value of θ is either kept
in the set of possible values or thrown out, depending
on whether the example trajectories are optimal w.r.t. the
respective value. In the deterministic setting, this is kept
as is, however, the decision on whether a trajectory is
optimal is relaxed. In the probabilistic setting, no θ is
eliminated. Instead, a lower probability is assigned to
it when the trajectories are far away from the modeled
optimum. The distribution P (τ | θ) can, in both cases,
be formulated to depend on some distance measure
d(τθ∗ , τθ) between an optimal trajectory τθ∗ and an
example trajectory τ . Three different distance measures
are studied throughout the user trial, constituting the
second factor:

1) Reward-Based: difference of the total rewards
2) Euclidean-Based: average Euclidean distance of all

states experienced in the trajectory
3) Strategy-Based: all trajectories are clustered into

strategies (aggressive vs. defensive, for example)
and the distance is defined as 0 if two trajectories
are in the same cluster and as ∞ otherwise3

The authors conducted a user study which focuses on
a simulated autonomous driving environment, depicted
in Figure 2. First, the participants were presented the
generated summaries and subsequently four random tra-
jectories, polling which is the autonomous car along with
the confidence of that decision. They found that, as ex-
pected, approximate-inference models outperform exact-
inference with statistical significance. However, it is
extremely relevant for the outcome which approximate-
inference model is used: the deterministic Euclidean-
based model outperformed all other models by far.

The results found are promising towards machine
teaching and successful policy summarization using a

3Note that with the strategy-based distance, the deterministic and
probabilistic models become equivalent.



principled approach of choosing example trajectories
instead of hand-crafting a metric.

3) Imitation Learning: The approach by Lage et
al. [18] is analogous to Huang et al. [17] but leverages
IL using a Gaussian random field model and active
learning [20] instead of InvRL. They used a random
grid world environment [21], a Pacman environment, and
an HIV simulator [22] for evaluating the performance.
However, they did not conduct a user study but instead
cross-matched the different models and evaluated how
well some model can infer the policy while the algorith-
mic teaching assumes another model. They found that
the reconstruction accuracy is best for the same model
if the teaching algorithm assumes the correct model and
is poor if the models mismatch.

This result is in line with the results found by Huang et
al. [17] where the exact-inference model that mismatches
human’s inference exhibits poor performance. It also
highlights that further studying of human inference is
essential for effective policy summarization and algo-
rithmic teaching [18].

B. Further Approaches

The previous two sections covered trajectory extrac-
tion and textual summaries. In this section, further
approaches that do not fall into these categories are
explored and connections to the previous methods are
drawn.

1) Counterfactual Explanations: Olson et al. [23]
proposed another scheme for summarizing policies and
presenting interesting states, focusing on giving coun-
terfactual explanations (that is, answering “why not?”-
questions). They do so by illustrating the minimal change
in a state needed such that the agent chooses a different
action, effectively answering why the agent chose an
action. Hence, it is not required to store all visited
trajectories or letting the agent run until interesting
trajectories occur, but they are generated on demand. To
generate states, an Adversarial Auto-Encoder (AAE) [24]
is used: an encoder, E(s) → z, maps a state s to a
latent representation z. The discriminator D(z) → a
then aims to extract the action from the latent, forcing
the generator G(z, a) → s to incorporate the actions
while reconstructing the states from the latents such
that the discriminator is not able to recover the ac-
tion. This setup allows generating states (which are
images in the studied task) while maintaining a latent
representation and incorporating the actions themselves
into the generation process [25]. Additionally, to find
counterfactual states, it is assumed that the agent itself

holds an encoder A(s) → za to a latent space and a
decoder a ∼ π(· | za) to select an action4. However,
the representations generated by a regular Auto-Encoder
(AE) usually have gaps and generating images results
in unrealistic counterfactuals [23], [26]. Hence, Olson
et al. [23] propose to use a Wasserstein Auto-Encoder
(WAN) [27] to find a well-behaving manifold zw in
which the agent’s latent za can be embedded (with the
en- and decoder Ew(za) → zw and Dw(zw) → za).
To find a minimal counterfactual state for a state s
and a given action pair (a, a′) (where a is the action
that was taken in state s and one wants to know why
a′ was not taken), the distance in the state’s WAN
embedding is used. This idea is summarized in the
following optimization problem:

min
zw

∥∥Ew(A(s))− zw
∥∥2
2

s.t. a′ = argmax
a

π
(
Dw(zw), a

)
Using z∗w and a′, the counterfactual state s′ can be
generated using the generator, i.e., s′ = G(Dw(z

∗
w), a

′).
Olson et al. [23] conducted two user studies to eval-

uate the fidelity of the generated states and whether
a flawed agent can be detected using counterfactual
explanations.

The former experiment was evaluated against an ab-
lated version of the proposed algorithm by removing the
encoder, discriminator, and WAN (effectively generating
states from just the actions and searching for counterfac-
tual states by maximizing π(a′ | za) w.r.t. za). To evaluate
whether the generated images are persuasive, ten images
were generated from the actual environment (Space
Invaders [28]), the counterfactual explanation model, and
the ablated version, asking the participants which images
were generated and which are real. While the difference
in selection accuracy between the ablated version and
actual images was found to be statistically significant,
the difference between the counterfactual explanations
and real images was not. Hence, it was concluded that
the model generates persuasive states, even though the
generated images are not perfect.

In the second experiment (to evaluate whether the
explanations actually help), the participants were shown
two agents, each with an original image, a counterfac-
tual explanation for some action, and an explanation
highlighting the areas of the input image that had the
most influence on the agent’s decision. The participants

4When using a neural network policy, this assumption makes sense
as every intermediate representation between layers can be interpreted
as a latent representation.



(a) Interface of the first part of the second ex-
periment. The top image is the original image
and the bottom images are, from left to right, the
highlighted and counterfactual state. Participants
had to select what component of the state the agent
pays the most attention to.

(b) Interface of the second part of the second experiment. Participants
had to select which of the two AI agents is flawed given the identified
components the agent pays attention to.

Figure 3: User interface of the user study conducted in [23]. Both taken from Olson et al., "Counterfactual State
Explanations for Reinforcement Learning Agents via Generative Deep Learning." [23]

were then asked to select the object the agent pays most
attention to and the explanation that helped the most
(highlights vs. counterfactual explanation). After going
through all trajectories, the results were summarized in a
diagram and the participants were asked to select which
IA has a malfunction. The user interface for the study
shown in Figure 3. Olson et al. [23] found, with statisti-
cal significance, that the participants’ accuracy increased
when explanations were present. Also, without explana-
tions, none of the participants were able to identify the
exact flaw of the agent while with counterfactual expla-
nations, a majority of the participants could identify the
flaw (with statistical significance). The reported reason
for selecting the object the agent pays attention to was,
however, often the highlighting of specific regions rather
than the counterfactual explanation. Nevertheless, most
participants reported that they used both (the highlighting
for finding the regions that possibly changed in the
counterfactual state and the counterfactual explanation
to identify the real reason).

Overall, counterfactual explanations seem like an ef-

fective way to teach a human how an agent behaves
in various situations. Especially when it is combined
with other methods such as highlighting important areas,
it provides an advantage over just exploring various
trajectories.

2) Combination of Local and Global Explanations:
Huber et al. [29] took a step towards integrating local
and global explanations into a single policy summary.
Specifically, they combine Layer-Wise Relevance Prop-
agation (LRP) and (a variant of) HIGHLIGHTS [6].

LRP is a class of methods for explaining the decisions
of a neural network, usually with visual inputs. Its goal
is to generate a saliency map highlighting the regions
in the input image that were most relevant for the
decision. Huber et al. [29] proposed a novel approach
for LRP based on the z+-rule for LRP, called argmax.
An illustration of the components of LRP and saliency
maps is given in Figure 4.

The second aspect for the combined local and global
explanation is a modified version of HIGHLIGHTS
named HIGHLIGHTS-DIV which was introduced along-



(a) Input (b) z+-Rule (c) argmax-Rule [29]

Figure 4: Illustration of the saliency maps used in [29]. From left to right, the input (with Pacman, pellets, and
ghosts depicted in green, blue, and red, respectively) and saliency maps generated by the z+-rule and argmax-rule
are shown. It can be seen that the right map focuses more on the vicinity of the player while the z+-rule highlights
huge areas of the field. Adopted from Huber et al., "Local and Global Explanations of Agent Behavior: Integrating
Strategy Summaries With Saliency Maps." [29]

side [6]. The -DIV variant considers state diversity
within the example trajectories. That is, only trajectories
which are decently different are kept for presentation,
reducing repetitive explanations and increasing one’s
attention [6].

Finally, the salience maps are integrated into HIGH-
LIGHTS-DIV by adding the salience values to the green
channel of the generated videos, supporting the local
interpretation of the agent’s policy.

Huber et al. [29] conducted multiple user studies
with four different models: HIGHLIGHTS-DIV and a
likelihood-based method (showing most probable states),
each with and without incorporating saliency maps.
Among other questions which exceed the scope of this
report, the participants were asked to select an agent
to play on their behalf (given multiple summaries of
two agents) and rate their confidence in the selection.
Additionally, the participants were shown summaries of
a single agent and were asked to describe the strategy
and justify their description. It was found that in the
agent selection task, HIGHLIGHTS-DIV greatly outper-
formed the likelihood-based approach, but the addition
of saliency maps to the summaries did not greatly
influence the result. Similar results were found for the
description of the agent’s policy: while HIGHLIGHTS-
DIV outperforms the likelihood-based method, adding
saliency maps does not drastically improve one’s ability
to grasp the policy. The difference is, however, noticeable
compared with the difference in the agent selection task,

although it is not statistically significant.
While the combination of local and global explana-

tions seems promising at first, the results show that the
quality of a summary primarily depends on the quality of
the global summary. They also show that saliency maps
might not be the most suitable tool for communicating
an agent’s rationale to laypersons as one has to learn
how to use them [29].

IV. INTERACTIVE LEARNING

So far, methods for policy summarization have been
explored. While these methods enable trust in au-
tonomous agents, a user is not able to correct unwanted
behavior that may be revealed by such a summary:
the only option would be to re-design or re-train the
agent which is tedious. To remedy this, various methods
for incorporating human feedback into training can be
applied, enabling a user to actively influence the policy
learned by an autonomous agent. Such methods are
therefore explored in this section.

The prevalent methods used for interactive learning
are reward- and policy-shaping (both approaches are
illustrated in Figure 5).

In reward-shaping, the environmental reward is aug-
mented or replaced by a human teacher to reflect their
goals [30]. While this has the advantage of removing
the need to specify a reward function (which can be
a tedious task), it has the disadvantage that the envi-
ronmental reward might not be used at all. Hence, the
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Figure 5: Illustration of the policy- and reward-shaping
cycle on the left and right hand side, respectively. States
are depicted st and st+1, corresponding to the current
and next state. Actions are depicted at and ãt, where the
latter was augmented by the human teacher. Rewards are
depicted rt and r̃t, where the latter was augmented by
the human teacher. Adopted from Cruz et al., "Training
Agents With Interactive Reinforcement Learning and
Contextual Affordances." [30]

agent only learns from human judgment which may be
sub-optimal. However, research has been conducted to
combine human reinforcement and environmental reward
in reward-shaping settings which is further explored in
the following sections.

In policy-shaping, the reward is not augmented but
actions are judged directly before applying them to the
environment [30]. That is, the human feedback is treated
as direct information about the policy [31]. Although it
has been shown that this method of feedback is more
effective [31], the following sections focus on reward
shaping as it is, to the best of the author’s knowledge,
the more common technique.

A. TAMER

The TAMER-framework (with “TAMER” standing for
“Training an Agent Manually via Evaluative Reinforce-
ment”) is a general framework for interactively training
agents introduced by Knox and Stone [32]. The basis
of TAMER is formed by a model Ĥ that predicts the
human feedback H based on the current state-action pair.
This model should exhibit some important properties:
first, it should generalize to unseen state-action pairs to
yield best results. Second, it should be robust towards a
moving target. That is, a human might not give the same
feedback every time a state-action pair is encountered
and the feedback may also depend on the current policy’s
performance. While this problem is primarily ignored
by Knox and Stone [33], it was later addressed by the
COACH-framework [34], [35] that is discussed in the

next section. Training Ĥ is the principal goal of TAMER
as the policy is chosen greedily w.r.t. the action, i.e.,
to maximize the instantaneous human feedback. The
key insight leading to this idea is that humans already
consider the long-term performance of an agent when
giving the reinforcement signal. Hence, the problem
of incorporating future rewards into the current action
selection vanishes.

A major problem with directly using human reinforce-
ment becomes apparent in high-frequency domains: a
human is not able to provide feedback as fast as actions
are executed [32]. Knox and Stone [32] approach this
problem by assuming a model that can be trained using
gradient descent and assigning each state-action pair that
was generated since the last reinforcement signal arrived
a credit ct, i.e., a weighting factor. The credit then trades
off the influence of the human feedback onto each state-
action pair and the problem boils down to computing
the credits. In practice, older older state-action pairs are
pruned and the credit for all pairs that occurred less than
0.2 s ago is set to zero to account for reaction time.

Knox and Stone [32] compared the TAMER algorithm
using a linear regression model with Radial Basis Func-
tion (RBF) features and gradient descent updates. The
investigated environments were Gym’s Tetris and Moun-
tain Car environments [28]. They showed that in the
Tetris environment, TAMER was able to learn a policy
within three games while RRL-KBR [36] needed 120
games. Policy iteration [37], a genetic algorithm [38],
and noisy cross-entropy [39] did not solve the environ-
ment at all. For Mountain Car, the results were not as
extreme, but TAMER still outperformed the baselines
(SARSA-3 and SARSA-20 [40]) in terms of sampling
efficiency. While TAMER agents are more efficient and
successful in the short term, completely autonomous
learners performed more consistent after training. This
suggests that the combination of both, using TAMER to
train fast and using RL to fine-tune, might be beneficial.

However, a major caveat of TAMER is that it solely
depends on human reinforcement and is not able to
take environmental reward into account even when it
is available. Knox and Stone addressed this by propos-
ing TAMER+RL to combine manual with environmen-
tal reward [33], allowing autonomous fine-tuning af-
ter learning with TAMER. While fine-tuning with just
using the environmental reward is straightforward, the
underlying idea of [33] is to leverage the learned model
Ĥ of the human reinforcement signals. They evaluated
eight different variants for combining the learned hu-
man reinforcement signal with the actual environmental



Figure 6: Results of Simultaneous TAMER+RL on the
Mountain Car and Cart-Pole environments [28] (top and
bottom, respectively). It can be seen that both TAMER
variants (action biasing and control sharing) outperform
plain SARSA in both settings (delayed and non-delayed
training). Taken from Knox and Stone, "Reinforcement
Learning From Simultaneous Human and MDP Re-
ward." [41]

reward. By direct experimentation on the Mountain Car
environment [28], they found that from all variants, the
following two performed best (all with a hyper-parameter
β):

• Action Biasing: Augment Q-function for action
selection only

• Control Sharing: Choose an action greedily from
Ĥ with probability min{β, 1} and otherwise use
the base agent’s mechanism

These methods outperformed plain SARSA(λ) both in
terms of long-term performance and sample efficiency
(with action biasing being the best). While these results
are impressive, TAMER+RL still has the disadvantage
that TAMER and the RL algorithm are executed sequen-
tially, i.e., TAMER has to be run first and it is not pos-
sible to simultaneously learn from human reinforcement
and environmental reward.

This gap is addressed again by Knox and Stone [41]
by introducing Simultaneous TAMER+RL. The primary
challenge is to trade off the influence of Ĥ and the
environmental reward R, boiling down to selecting the
parameter β for all the aforementioned integration meth-

ods. To determine β, Simultaneous TAMER+RL used
a notion of eligibility traces [40]. However, instead of
updating the traces in every step, they are only updated
during training (i.e., when human feedback is given) and
decayed when not training (i.e., when the RL algorithm
learns from environmental reward).

Knox and Stone [41] conducted experiments using
the Mountain Car and Cart-Pole environments [28] with
SARSA(λ) as a baseline. For each method (action bias-
ing and control shaping), two separate settings are eval-
uated: in the first, training begins in the zeroth episode
(i.e., from the beginning) and in the second, training
begins after 20 episodes for the Mountain Car and 25
episodes for the Cart-Pole. While the sample size was
too low to report statistical significance, they showed that
Simultaneous TAMER+RL outperforms plain SARSA in
both settings (with zero and 25 episodes before training)
and both environments. The results are summarized in
Figure 6. While the agents that first learned solely from
the Markov Decision Process (MDP) perform worse in
the initial episodes, they found that when excluding these
episodes from the calculation of the average reward,
learning first outperforms the agents that were trained
from the beginning. This suggests that learning prior to
training via human reinforcement improves policies.

So far (Simultaneous) TAMER+RL was applied to lin-
ear Q-function approximations only. Arakawa et al. [42]
proposed a further extension called DQN-TAMER that
combined Deep Q-Learning (DQN) with the TAMER
framework for supporting deep Q-functions. For brevity,
this methods will not be studied in greater detail in
this report other than providing a short outline of the
results. Extending TAMER to deep RL methods allows
application to more complicated environments. They ap-
plied their method to a Maze and Taxi environment [28],
showing that DQN-TAMER outperforms plain DQN as
well as Deep TAMER (which uses a deep model for Ĥ
but does not incorporate an explicit Q-function) [43].

This outlook sums up the TAMER framework. The
next section explores another, yet similar, framework that
incorporates that as the policy changed, the feedback
provided by humans changes as well.

B. COACH

As mentioned before, a major downside of TAMER
is that it assumes that human feedback does not change
when the policy is changing. This problem is addressed
by COACH (where “COACH” stands for “Convergent
Actor-Critic by Humans”) proposed by MacGlashan et
al. [34]. As the name suggests, COACH is based on



actor-critic methods and the insight that the advantage
function is a good model for human feedback [34].
Hence, as the human provides the advantage values,
no “critic” component is needed. Similar to TAMER,
COACH leverages eligibility traces [40] to apply feed-
back to states visited before giving the feedback. To
enable the user to choose how many states a reinforce-
ment signal is applied backwards in time, COACH keeps
multiple eligibility traces with different decay rates. The
user then selects which trace to use for applying the
update. To cover for a human’s reaction time, the latest
d steps are discarded from the policy update (where d
is a hyper-parameter and usually set such that the latest
0.2 s to 0.8 s are not covered). As with regular actor-
critic methods, a variety of concrete update methods are
available.

McGlashan et al. [34] evaluated COACH compar-
ing it to Q-Learning [44] and TAMER [32]. Instead
of conducting a user study, the human reinforcement
was generated in three different ways: using plain
(sparse) environmental reward (favoring Q-Learning),
only action-dependent feedback (favoring TAMER), and
using the advantage function of the current policy (favor-
ing COACH). These three feedback variants mimic the
feedback model assumed by the respective models. As
expected, COACH outperforms Q-Learning and TAMER
in the latter setting while performing mediocre in the
other settings.

An extension of COACH was proposed by Arumugam
et al. [35] for deep policies. They evaluate the algorithm
in a Minecraft environment where the agent has to
walk to a specific target. The policy is represented
by a Convolutional Neural Network (CNN) that uses
screen images as inputs. To reduce training time, a
Convolutional Auto-Encoder (CAE) [45], [46] is trained
beforehand to extract parsimonious features. The exper-
iment was executed with two trainers (from the set of
the authors) rather than a wider group of participants
to assess the theoretical advantage of Deep COACH
rather than usability by laypersons. They found that Deep
COACH converges to a reasonable performance within
a few hundred steps, corresponding to approximately
ten minutes of training time. The results were compared
with plain COACH and Deep TAMER [43]. While Deep
COACH and Deep TAMER performed rather similar,
plain (non-deep) COACH did not manage to solve the
task. However, no statement on statistical significance
was made.

V. DISCUSSION AND CONCLUSION

In this report, various methods for summarizing poli-
cies and interactive learning have been explored.

Policy summarization tackles the problem of convey-
ing information about an agent’s policy to a human the
agent might collaborate with. Establishing trust in an
autonomous system is important for effective collabora-
tion [1]. While summaries are helpful to explain a policy,
it does not enable the user to actively influence the policy
that is being executed. Hence, they are not able to correct
unwanted behavior.

This problem is tackled by methods for interactive
learning. Instead of just using environmental reward, they
leverage human feedback and incorporate it into training.
As opposed to policy summarization, the research con-
ducted in this domain did not feature lots of user studies,
hence the assessment of the suitability for laypersons is
questionable.

A problem that was identified during the literature
review is that the two fields (policy summarization and
interactive learning) seem to evolve quite separately.
However, as shown in the policy summaries, it can be
hard to grasp the policy an agent is actually executing
and to give meaningful feedback. Approaches for com-
bining the research are, for example, showing the user
a counterfactual explanation of why the agent did not
choose the action the user would suggest (maybe it has
its reason). The human can then still decide whether
to overwrite the action or punish the agent, but the
consequences will be clearer. One can imagine similar
integration methods for policy extraction approaches to
punish or reward past actions (when the training takes
very long and it is infeasible to supervise the learning
process continuously).
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