
Random Fourier Series Features
Fabian Damken

fabian.damken@stud.tu-darmstadt.de
Joe Watson

joe.watson@tu-darmstadt.de
Jan Peters

jan.peters@tu-darmstadt.de

Abstract—Neural networks (NNs) are powerful predic-
tion models used in various domains such as robotics con-
trol. However, they lack a principled approach for uncer-
tainty quantification. While research has been conducted
towards Bayesian neural networks (BNNs), Gaussian pro-
cesses (GPs) remain the go-to approach for reliable uncer-
tainty estimation, capturing both aleatoric and epistemic
uncertainty. This weakness is due to the intractability of
inference on BNNs and a lack of principled and scalable
approximate inference methods. However, the success of a
GP highly depends on the kernel design, i.e., the kernel
is not learned from data compared to a NN. We propose
random Fourier series features (RFSFs), an extension of
the well-known random Fourier features (RFFs) to bridge
the gap between the data-driven features of NNs and the
powerful inductive biases and practical inference of GPs.

I. INTRODUCTION

(Deep) neural networks (NNs) are extremely powerful
and expressive machine learning models dominating the
current landscape of artificial intelligence [1]. While
they have great predictive power, NNs usually lack
uncertainty estimation. In Bayesian machine learning, we
not only seek models that predict some value, but that
also gauge their uncertainty about the prediction. While
frequentistic models are capable of estimating aleatoric
(i.e., noise-induced) uncertainty, Bayesian models in-
clude epistemic uncertainty that quantifies the model’s
trust “in itself.” Quantification of the uncertainty is useful
in a variety of domains such as model-predictive control
(MPC) [2], [3].

A proposed class of extensions for NNs are Bayesian
neural networks (BNNs) [4], [5] combining the expres-
siveness of NNs with uncertainty quantification. How-
ever, exact inference is intractable, so these methods
have to resort to approximate inference approaches [5]–
[10]. Also, BNNs suffer from various drawbacks such
as expensive and complicated training, inaccurate pos-
teriors, and unreliable uncertainty quantification [11]–
[16]. Hence, they are not suitable for application in high-

SE N/A1

RFF RFSF

ArcSine NTK, DKL

Polynomial RFSF, NLM

Non-Stationary

Features

Learning

Figure 1: Connections between various (Bayesian) re-
gression models. The three axis distinct them between
using kernels vs. features (blue), relying on manually
designing vs. learning (yellow), and stationary vs. non-
stationary behavior (green). RFSFs (our method) are
not clearly stationary or non-stationary and theoretical
analysis is up to future research. Abbreviations used
in the figure: SE (Squared Exponential), RFF (Ran-
dom Fourier Features), RFSF (Random Fourier Series
Features), NLM (Neural Linear Model), NTK (Neural
Tangent Kernel), DKL (Deep Kernel Learning)

stakes domains such as medical diagnosis where accurate
uncertainty quantification is necessary [17].

A well-known alternative approach for Bayesian ma-
chine learning are Gaussian processes (GPs). Gaussian
processes allow exact inference leveraging linear regres-

1There is, to the best of our knowledge, no method for learning
kernels white simultaneously guaranteeing stationarity.

sion. Despite the great uncertainty estimation of GPs,
their raw prediction power is limited by and highly
dependent on the kernel. This dependence is reflected
in the high amount of kernels that have been studied
throughout the years [18, ch. 2]. Motivated by this depen-
dence, methods for (deep) kernel learning (DKL) have
been developed [19]–[21]. However, exact inference with
kernels is a tedious task requiring inversion of an N×N -
matrix (the Gram matrix) where N is the number of data
points. The computational complexity of this is cubic,
prohibiting online use of GPs for large data sets [22].
Approaches for reducing the computational complexity
have been proposed such as inducing points [23] or the
Nyström method [24], [25].

Alternatively, one can resort to Bayesian linear re-
gression with features. To mimic GP regression, these
features are chosen to approximate a kernel, e.g., the
squared exponential (SE) kernel. A well-known choice
are random Fourier features (RFFs) that can approximate
arbitrary stationary kernels and are often configured for
the SE kernel as this is possible in closed form [22].
However, the SE kernel usually produces results that are
too smooth [26] and is, by design, not able to capture
functions with non-stationary length-scale.

Contribution: We propose an extension of RFFs,
random Fourier series features (RFSFs), that build a
bridge between (a) RFFs, (b) DKL, and (c) BNNs by (a)
reducing the computational complexity of GP regression
due to working with features, (b) enrich the capacity of
GPs by adding more parameters and reducing the need
of (manually) designed kernels, and (c) using classical
training methods known from NNs for optimizing the
hyper-parameters. Figure 1 illustrates these connections
on three axis: kernels vs. features, designing vs. learning,
and stationary vs. non-stationary length-scales. Despite
the lack of a proof and given only empirical evidence,
we found that RFSFs can represent various kernels and
features, bridging the gap between stationary and non-
stationary kernels.

We will now continue by highlighting connections to
related work (section II). Subsequently, we will lay out
some preliminaries (section III), present the methodology
of RFSFs in section IV, and finally empirically evaluate
and summarize our findings as well as provide direction
for future research (sections V and VI).

II. RELATED WORK

We closely follow the work of Watson et al. [17] here.
We structure related work into the origins of motivation

for this work: Bayesian neural networks and Gaussian
processes.

a) Bayesian Neural Networks: Bayesian neural
network have a long history directly of using NNs
as statistical models [4] and for regularization [27].
Many approaches are based on Markov-chain Monte
Carlo (MCMC) [28]–[30], however, these approaches are
computationally expensive and scale poorly with larger
models. This motivated the development of variational
inference (VI) methods for efficient approximation [27],
[31], [32]. Some alternative approximation techniques
are, for instance, Laplace approximation [4], [7], [33],
ensembles [9], [13], [34], [35], and expectation propa-
gation [6]. Another alternative are Bayesian last layers
(BLLs) networks where the last layer-weights are treated
in a Bayesian fashion [36]. They have successfully been
applied in a variety of tasks [37]–[42].

b) Gaussian Processes: It was shown that NNs
with infinite width are equivalent to GPs under mild
conditions [5]. But also beyond this equivalence a lot
of focus is put on the intersection of GPs and BNNs.
DKL [19] is concerned with learning closed-form deep
kernels using NNs to find more expressive covariance
functions. A similar idea are manifold GPs [20] which
extract intermediate features from data on which a de-
signed covariance function performs better. Despite the
great success of GPs, exact inference is computationally
expensive. This motivated the development of approxi-
mate GPs in many fashions such as inducing points and
direct approximations of the kernel [22], [24].

III. PRELIMINARIES

A. Fourier Series

Fourier series are a principled way to represent
any periodic function (satisfying the Dirichlet condi-
tions [43]) as a linear combination of sine and cosine
waves. The resulting approximation f̂K of the function
f can be represented in three different fashions: in
sine-cosine form, amplitude-phase form, and exponential
form. In the sine-cosine form, the series is represented by
the sum of separate sine and cosine waves with separate
amplitudes,

f̂K(x) =
a0
2

+

K∑
k=1

ak cos(ωkx) + bk sin(ωkx), (1)

where the Fourier coefficients ak and bk are given by

ak =
1

T̃

∫ x0+2T̃

x0

f(x) cos(ωkx) dx

bk =
1

T̃

∫ x0+2T̃

x0

f(x) sin(ωkx) dx .

with ω := π/T̃ Here, T̃ is half the period of f (for
instance, f(x) = sin(x) has the half-period T̃ = π). In
amplitude-phase form,

f̂K(x) =
A0

2
+

K∑
k=1

Ak cos(ωkx− ϕk),

the series is represented by individual cosine waves with
amplitudes and phases. These can be computed from the
Fourier coefficients as follows:

Ak =
√
a2k + b2k ϕk = arctan2(bk, ak).

For the following, we stick to the former version (sine-
cosine) for practical reasons: the amplitude-phase for-
mulation introduces ambiguities as ϕ ≡ ϕ + 2π. When
optimizing numerically, this can cause problems due to
either having ambiguous optima or having to include
constraints.

B. Gaussian Process Regression

GP regression can be viewed in two fashions: firstly,
as an extension of linear regression to an infinite number
of features involving computation of the limit n → ∞
where n is the number of features. Secondly, as an
infinite Gaussian distribution over a function space where
every finite subset of the random variables is jointly
Gaussian. However, both definitions (or views) yield the
exact same result. For the rest of this paper we will stick
to the former definition.

We closely follow Rasmussen and Williams [44] in
terms of notation and will give a brief overview over it
now. Let x∗ and y∗ be a test input and target1, respec-
tively, then the GP regression posterior is a Gaussian
distribution with the following mean and variance:

E[y∗] = k>∗K
−1y V[y∗] = k∗ − k>∗K

−1k∗. (2)

Here, K denotes the Gram matrix on the training inputs,
k∗ denotes the evaluation of the kernel between the test
and train inputs organized into a column vector, and k∗
is the kernel evaluation of the test input x∗; train targets
are organized into y.

1When predicting, the target is not known and the GP defines a
Gaussian distribution over it.

An exemplary kernel is the SE kernel kSE(x − y) =
exp
{
−‖x− y‖22/(2`2)

}
with the length-scale2 `2. How-

ever, it has been shown that this kernel often produces
extremely smooth functions (as it is infinitely differen-
tiable) often unrealistic for real-world data [26]. Despite
its drawbacks, the SE kernel remains one of the most
widely used kernels due to its simplicity [44, p. 83].

While employing the “kernel trick” allows great
flexibility with (potentially) infinite-dimensional feature
spaces, it introduces major computational challenges due
to the inversion of the Gram matrix in eq. (2). That is,
the inversion has time complexity O(N3), where N is
the number of data points in the training data set. One
approach for tackling this problem are random Fourier
features.

IV. METHODS

In this section we cover the methodology and core
contributions of our work, staring with a discussion of
RFFs and introducing the novel RFSFs.

A. Random Fourier Features

By explicitly modeling the features, the inversion
of the Gram matrix can be avoided by resorting to
computing the distribution over the weights explicitly,
i.e., “switching back” to Bayesian linear regression.
A well-known approach for this are RFFs [22] which
approximate the SE kernel. A single RFF is given by

zω(x) =

[
cos(〈ω|x〉)
sin(〈ω|x〉)

]
. (3)

This definition is based on the observation that

k(x− y) = Eω∼p(·)
[
〈zω(x)|zω(y)〉

]
(4)

where k(x − y) is a stationary kernel and p(ω) is
its Fourier transform (which is a proper probability
distribution due to Bochner’s theorem [26]). For the SE
kernel, p(ω) is tractable and equal to a standard normal
distribution [44]. As the integral in eq. (4) is intractable,
it is usually approximated using Monte-Carlo estimation
over ω. Let {wj}Dj=1 be the particles sampled from
p(ω). The corresponding feature particles zωj

(·) are then
concatenated, forming the complete feature z(·) which
is scaled by 1/

√
D such that the inner product yields the

usual Monte Carlo approximation of an expectation.

2The length-scale determines the “roughness” of the function
samples [44, p. 15].

B. Random Fourier Series Features

We extend RFFs to random Fourier series features
(RFSF) by splitting up eq. (3) further into sub-features
with separate amplitudes for the sine/cosine component
and adding the respective scaling factors for x:

z̃
(k)
ω (x) =

[
ak cos

(
ωk 〈ω|Λ−1|x〉

)
bk sin

(
ωk 〈ω|Λ−1|x〉

)]. (5)

which are then summed over k = 1, 2, . . . ,K. The
matrix Λ represents the length-scales which can be
either isotropic for a single length-scale but also different
for the input dimensions, allowing automatic relevance
determination (ARD). This formulation is inspired by
the sine-cosine formulation of a Fourier series (eq. (1)),
motivating the name. Note that the half-period T̃ has the
function of a “secondary” length-scale applied equally to
all input dimensions.

To find the optimal hyper-parameters a0:M , b0:M ,
and Λ, we use the empirical Bayes approxima-
tion [45, p. 165], i.e., maximize the marginal log-
likelihood over the training data. Beyond the kernel’s pa-
rameters, the data is assumed to have Gaussian aleatoric
noise with zero mean and variance σ2n which is an
additional hyper-parameter.

As said in the introduction, theoretical analysis is up to
future work. We will therefore directly move to empirical
evaluation in the next section.

V. EVALUATION

In this section, we will empirically evaluate the pro-
posed RFSFs. We aim to assess the following central
hypotheses:

Hypothesis 1. Do RFSFs outperform RFFs (due to their
increased parameter capacity)?

Additionally, we try to answer:

Hypothesis 2. How do different initial values of the
feature’s amplitudes affect the performance?

In the following, we will first present some implemen-
tation details (section V-A) and subsequently present the
experiment setup (section V-B) and results (section V-C).

A. Implementation

We implemented RFSFs using GPyTorch [21] and
used Adam [46] for maximizing the marginal log-
likelihood. Despite the computational advantage of not
having to compute (and, most importantly, invert) the
Gram matrix, we implemented RFSFs directly as a GPy-
Torch kernel. This allows a unified view and evaluation

when comparing to well-known kernels like the SE
kernel. Also, it allowed to just modifying the existing
implementation of RFFs, reducing the risk of mistakes.
We published our implementation on GitHub3.

B. Experiment Setup

To assess our hypothesis, we evaluate our approach on
three classes of data sets: synthetic (table I), UCI [47]
(table II), and robotics (real data from a cartpole with the
states as inputs and control signal as target). The model
quality is measured by the RMSE and log-likelihood
on the test data (using the test/train splits provided
along [8] for a fair comparison). While the RMSE on
the mean measures raw predictive performance and how
closely the mean follows the true data, the log-likelihood
also assess the uncertainty quantification. For RFSF, we
assess three different initializations of the amplitudes:
• Random: Sampled from a uniform distribution, i.e.,
a0:M , b0:M ∼ U(0, 1).

• ReLU: Taken from the Fourier series for a periodic
ReLU, i.e., am = (T̃ (−1)m−T̃)/(m2π2) and bm =
−(T̃ (−1)m)/(mπ) for m > 0 and a0 = T̃ /2 and
b0 = 0 (see appendix A for further details and the
derivation).

• Single Harmonic (SH): All set to zero except for
the 0-th which are set to one, i.e., a0 = b0 = 1,
a1:M = b1:M = 0.

The idea behind each is as follows. The random initial-
ization is most simplistic and a baseline for the others.
Initializing the amplitudes as (periodic) ReLUs sets the
connection to kernel learning and BNNs with the ReLU
being one of the most common activation functions.
Starting with a single harmonic similar to RFFs connects
RFSFs closer to the idea behind RFFs and serves as an
assessment of our hypothesis that RFSFs should have
higher capacity than RFFs (i.e., if the marginal log-
likelihood would not get better by touching the other
amplitudes, they shall not change).

We compare our method to the SE and RFF kernels.
For some data sets (UCI Boston, Concrete, Power, and
Yacht), we also compare to popular approaches for
BNNs:
• Gaussian Bayesian Last Layer (GBLL) [44]: A

BLL NN with Gaussian conjugate prior on the
weight.

• Ensemble [9]: An ensemble of NNs all of which
provide mean and variance of the target. Using

3https://github.com/fdamken/random-fourier-series-features

https://github.com/fdamken/random-fourier-series-features
https://github.com/fdamken/random-fourier-series-features

Name Function Domain

Cosine cos(2πx) [−0.5, 0.5]
Heaviside† Θ(x) [−0.5, 0.5]
Heavi-Cosine Θ(x) cos(2πx) [−0.5, 0.5]
Gap-Cosine cos(2πx) [−0.75,−0.25) ∪ (0.5, 0.75]

Table I: Synthetic Data Sets; All data sets are aug-
mented with additive zero-mean Gaussian noise with
σ2 = 10−4. †The heaviside function is defined as
Θ(x) = max{0, sign(x)}

Name Short Name Source [47]

Boston Housing Boston
Concrete Compression Strength Concrete [48]
Combined Cycle Power Plant Power [49], [50]
Yacht Yacht
Energy Efficiency Energy [51]
Kinematics of 8-Link Robot Kin8nm
Naval Propulsion Plants Naval [52]
Protein Tertiary Structure Protein
Wine Quality (Red) Wine [53]

Table II: UCI Data Sets

some neat tricks during training, Ensemble provides
predictions along with uncertainty quantification.

• Maximum A-Posteriori (MAP): Regularized neural
network trained to output mean and covariance of
the target.

We include results for this models for a broader com-
parison, however, we did not implement them ourselves
and took the results from [17] (with permission).

C. Results

We first compare visually the quality of RFSFs to the
SE kernel (and RFFs) on the synthetic data. As this data
is one-dimensional, it is straightforward to visualize. Fig-
ure 2 (on page 6) shows the results of the aforementioned
kernels on the synthetic data. It can be seen that the
RFFs are hardly distinguishable from SE (which makes
sense as RFFs can be proven to approximate the SE
kernel). Therefore, we only discuss differences between
RFSFs and the SE kernel which can be transferred to
comparing RFSFs to RFFs. For every data set except the
Gap-Cosine, both RFSFs and the SE kernel approximate
the true function reasonably, although SE fails to capture
discontinuities (Heaviside and Heavi-Cosine) and makes
them extremely smooth. However, both kernels exhibit
a small length-scale not appropriate for the functions.
This is visible in the roughness of the GP samples and
is especially prevailing for the SE on the Heaviside and
Heavi-Cosine data sets (figs. 2b and 2e). This shows

that RFSFs can capture non-stationary trends (cf. fig. 1)
opposed to the SE kernel. For the Gap-Cosine data
set, the SE kernel (fig. 2h) clearly outperforms RFSFs
(fig. 2g) within the gap by actually capturing the overall
trend (with the true function lying withing the confidence
interval).

Quantitative results for all data sets are summarized in
table III. Table IIIa contains results for the synthetic data
(and Cartpole) and table IIIb contains UCI-results and,
for a broader comparison, some results from [17]. The
results for the remaining UCI data sets not covered in
table IIIb are given in table IV in appendix appendix C
for brevity (the results on the reduced data sets is
sufficient for the discussion).

1) Synthetic Data Sets: On synthetic data, RFSFs
perform roughly equal to the SE kernel and RFFs on the
Cosine data set in terms of the log-likelihood and out-
perform both in terms of the RMSE (again on the Cosine
data set). Also, they perform better on the Heaviside data
set in terms of the log-likelihood. However, for all other
metrics (log-likelihood and RMSE of Heavi-Cosine and
Gap-Cosine as well as RMSE on Heaviside), either the
SE kernel or RFFs outperform all variants of RFSFs.

Focusing just on the RFSFs variants, no clear trend
can be determined in terms of the log-likelihood. For
the RMSE, however, the ReLU initialization is (with the
exception of Cosine) outperformed by one of the other
variants (Random or SH).

2) UCI Data Sets: In terms of the log-likelihood,
RFSFs are either outperformed by or equal to the SE
kernel and Ensemble. For the remaining data sets in
table IV for which [17] do not report results, the results
are similar. Within the class of RFSFs variants, the
Random initialization is often superior w.r.t. to log-
likelihood and RMSE.

3) Cartpole Data Set: On the Cartpole data set, the
SE kernel outperforms RFSFs and RFFs in both log-
likelihood and RMSE by far. For the different RFSFs
variants, no clear distinction (difference of more than
the measurement uncertainty) is visible.

VI. CONCLUSION

From the evaluation in section V, we conclude that
there is no advantage of extending RFFs to RFSFs. In
the following subsections we explore our experimental
hypothesis in greater detail and lay out how we came
to this conclusion. Finally, in section VI-C, we propose
some directions for future research and highlight some
peculiarities we found.

9d543c9eb7a48a0f95140a0cab754ce031469e65 data/temp/results/4

(a) RFSFs on Heaviside

9d543c9eb7a48a0f95140a0cab754ce031469e65, Dirty!data/temp/results/7

(b) SE on Heaviside

d0a4bc6964072c860ebdde121cc74b2fdec09a9d, Dirty!data/temp/results/12

(c) RFFs on Heaviside

9d543c9eb7a48a0f95140a0cab754ce031469e65 data/temp/results/1

(d) RFSFs on Heavi-Cosine

9d543c9eb7a48a0f95140a0cab754ce031469e65, Dirty!data/temp/results/8

(e) SE on Heavi-Cosine

d0a4bc6964072c860ebdde121cc74b2fdec09a9d, Dirty!data/temp/results/13

(f) RFFs on Heavi-Cosine

9d543c9eb7a48a0f95140a0cab754ce031469e65 data/temp/results/2

(g) RFSFs on Gap-Cosine

9d543c9eb7a48a0f95140a0cab754ce031469e65, Dirty!data/temp/results/9

(h) SE on Gap-Cosine

d0a4bc6964072c860ebdde121cc74b2fdec09a9d, Dirty!data/temp/results/14

(i) RFFs on Gap-Cosine

Figure 2: Gaussian process regression results using RFSFs, SEs, and RFFs kernels for the synthetic data sets. The
shaded areas depict the epistemic/aleatoric (posterior) uncertainty, the blue solid line depicts the (posterior) mean,
the black stars are the training samples, and the black solid line depicts the true function. The colorful lines are
samples from the GPs.

A. Hypothesis 1

Hypothesis 1 was that “RFSFs outperform RFFs (due
to their increased parameter capacity).” We tested this
hypothesis by comparing RFSFs to RFFs and a SE kernel
on a variety of data sets and train/test splits. As we saw
in section V-C, RFSFs are competitive on some data sets,
but their advantage is not consistent and they fall short
in lots of cases compared to RFFs. Hence, we conclude
that even though RFSFs have a greater capacity than
RFFs, they hardly gain any performance from the added
complexity. We want to highlight that this is also true
w.r.t. to the SH initialization, i.e., initializing RFSFs such
that they mimic RFFs in the initial phase.

B. Hypothesis 2

In the second hypothesis 2 we asked how “different
initial values of the feature’s amplitudes affect the per-
formance.” We investigated this by testing three different
initializations: Random, ReLU, and SH. The results
presented in section V-C show that we did not saw a
major trend in these initializations.

C. Future Work

We investigated various reasons why RFSFs perform
worse than RFFs. For future work and to tackle this
question, theoretical analysis of what kernel is approxi-
mated by eq. (5) can be insightful. Additionally, a better
understanding of the effect of the initial half-period value
on the performance is desired (see appendix B).

Data Set
Model Cosine Heaviside Heavi-Cosine Gap-Cosine Cartpole

L
og

-L
ik

. RFSF Random 2.43 0.11 -1.66 1.27 -9.88±1.86
ReLU 2.34 0.80 -0.90 1.50 -12.30±2.31

SH 2.37 0.21 -1.23 1.52 -9.73±2.10
GP SE 2.44 0.73 0.77 2.58 -3.21±1.64

RFF 2.44 0.73 0.78 2.59 -7.38±1.94

R
M

SE
RFSF Random 0.45 0.35 0.55 0.91 0.91±0.08

ReLU 0.39 1.06 3.55 1.62 1.01±0.10
SH 0.70 0.35 0.48 0.75 0.98±0.11

GP SE 0.45 0.30 0.29 0.40 0.77±0.07
RFF 0.45 0.31 0.30 0.42 1.26±0.10

(a) Results for the synthetic and robotics data sets.

Data Set
Model Boston Concrete Power Yacht

L
og

-L
ik

.

RFSF Random -2.40±0.05 -2.94±0.05 -2.78±0.01 -0.80±0.02
ReLU -2.39±0.05 -2.93±0.04 -2.80±0.01 -0.86±0.02

SH -2.44±0.06 -2.94±0.05 -2.78±0.01 -0.83±0.02
GP SE -2.38±0.05 -2.98±0.06 -2.82±0.01 -0.80±0.02

RFF -2.40±0.06 -3.01±0.05 -2.84±0.01 -0.80±0.02
GBLL† Leaky ReLU -2.90±0.05 -3.09±0.03 -2.77±0.01 -1.67±0.11

Tanh -3.06±0.03 -3.21±0.03 -2.83±0.01 -0.70±0.10
Ensemble† Leaky ReLU -2.48±0.09 -3.04±0.08 -2.70±0.01 -0.35±0.07

Tanh -2.48±0.08 -3.03±0.07 -2.72±0.01 -0.03±0.05
MAP† Leaky ReLU -2.60±0.07 -3.04±0.04 -2.77±0.01 -5.14±1.62

Tanh -2.59±0.06 -3.11±0.04 -2.76±0.01 -1.77±0.53

R
M

SE

RFSF Random 2.95±0.15 4.70±0.14 3.90±0.03 0.51±0.03
ReLU 3.51±0.44 4.77±0.15 3.95±0.04 0.53±0.03

SH 3.17±0.17 4.66±0.15 3.88±0.03 0.52±0.03
GP SE 2.81±0.12 4.98±0.15 4.03±0.03 0.51±0.04

RFF 2.98±0.13 5.08±0.15 4.11±0.03 0.52±0.04
GBLL† Leaky ReLU 4.19±0.17 5.01±0.18 3.85±0.03 1.09±0.09

Tanh 4.61±0.23 5.50±0.23 4.09±0.04 0.43±0.03
Ensemble† Leaky ReLU 2.79±0.17 4.55±0.12 3.59±0.04 0.83±0.08

Tanh 2.71±0.13 4.51±0.13 3.66±0.04 0.38±0.03
MAP† Leaky ReLU 3.02±0.17 4.75±0.12 3.81±0.04 0.94±0.09

Tanh 3.01±0.17 5.15±0.13 3.78±0.04 0.39±0.04

(b) Results for the UCI datasets. †Values taken from [17] with permission.

Table III: Evaluation results for the presented data sets. For UCI and Cartpole, the mean along with the measurement
uncertainty are computed over the provided train/test splits. The synthetic data sets only have a single train/test
split, hence no uncertainty can be provided. Both the log-likelihood and RMSE are reported where the higher and
lower values are better, respectively. The best values for a data set are depicted boldface. Values are considered
equal if their confidence regions overlap (w.r.t. the best mean value). The results for the remaining data sets are
given in table IV in appendix C.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
Advances in Neural Information Processing Systems, vol. 25.
Curran Associates, Inc., 2012.

[2] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-Based Model Predictive Control: Toward Safe Learn-
ing in Control,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 3, no. 1, pp. 269–296, 2020.

[3] E. Bradford, L. Imsland, D. Zhang, and E. A. del Rio Chanona,
“Stochastic data-driven model predictive control using gaussian

processes,” Computers & Chemical Engineering, vol. 139, p.
106844, Aug. 2020.

[4] D. J. C. MacKay, “A Practical Bayesian Framework for Back-
propagation Networks,” Neural Computation, vol. 4, no. 3, pp.
448–472, May 1992.

[5] R. M. Neal, Bayesian Learning for Neural Networks. Springer
Science & Business Media, Dec. 2012.

[6] J. M. Hernandez-Lobato and R. Adams, “Probabilistic Back-
propagation for Scalable Learning of Bayesian Neural Net-
works,” in Proceedings of the 32nd International Conference
on Machine Learning. PMLR, Jun. 2015, pp. 1861–1869.

[7] J. Denker and Y. LeCun, “Transforming Neural-Net Output
Levels to Probability Distributions,” in Advances in Neural

Information Processing Systems, vol. 3. Morgan-Kaufmann,
1990.

[8] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approxi-
mation: Representing Model Uncertainty in Deep Learning,” in
Proceedings of The 33rd International Conference on Machine
Learning. PMLR, Jun. 2016, pp. 1050–1059.

[9] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple
and Scalable Predictive Uncertainty Estimation using Deep
Ensembles,” in Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc., 2017.

[10] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra,
“Weight Uncertainty in Neural Network,” in Proceedings of the
32nd International Conference on Machine Learning. PMLR,
Jun. 2015, pp. 1613–1622.

[11] A. Foong, D. Burt, Y. Li, and R. Turner, “On the Expressiveness
of Approximate Inference in Bayesian Neural Networks,” in
Advances in Neural Information Processing Systems, vol. 33.
Curran Associates, Inc., 2020, pp. 15 897–15 908.

[12] A. Y. K. Foong, Y. Li, J. M. Hernández-Lobato, and R. E.
Turner, “’In-Between’ Uncertainty in Bayesian Neural Net-
works,” arXiv:1906.11537 [cs, stat], Jun. 2019.

[13] I. Osband, J. Aslanides, and A. Cassirer, “Randomized Prior
Functions for Deep Reinforcement Learning,” in Advances in
Neural Information Processing Systems, vol. 31. Curran
Associates, Inc., 2018.

[14] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin,
J. Dillon, B. Lakshminarayanan, and J. Snoek, “Can you trust
your model’ s uncertainty? Evaluating predictive uncertainty
under dataset shift,” in Advances in Neural Information Pro-
cessing Systems, vol. 32. Curran Associates, Inc., 2019.

[15] F. Wenzel, K. Roth, B. S. Veeling, J. Świątkowski, L. Tran,
S. Mandt, J. Snoek, T. Salimans, R. Jenatton, and S. Nowozin,
“How Good is the Bayes Posterior in Deep Neural Networks
Really?” arXiv:2002.02405 [cs, stat], Jul. 2020.

[16] J. Yao, W. Pan, S. Ghosh, and F. Doshi-Velez, “Quality of
Uncertainty Quantification for Bayesian Neural Network Infer-
ence,” arXiv:1906.09686 [cs, stat], Jun. 2019.

[17] J. Watson, J. A. Lin, P. Klink, J. Pajarinen, and J. Peters, “Latent
Derivative Bayesian Last Layer Networks,” in Proceedings of
The 24th International Conference on Artificial Intelligence and
Statistics. PMLR, Mar. 2021, pp. 1198–1206.

[18] D. Duvenaud, “Automatic model construction with Gaussian
processes,” Thesis, University of Cambridge, Nov. 2014.

[19] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep
Kernel Learning,” in Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics. PMLR,
May 2016, pp. 370–378.

[20] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth,
“Manifold Gaussian Processes for regression,” in 2016 Inter-
national Joint Conference on Neural Networks (IJCNN), Jul.
2016, pp. 3338–3345.

[21] A. Jacot, F. Gabriel, and C. Hongler, “Neural Tangent Ker-
nel: Convergence and Generalization in Neural Networks,”
arXiv:1806.07572 [cs, math, stat], Feb. 2020.

[22] A. Rahimi and B. Recht, “Random Features for Large-Scale
Kernel Machines,” in Advances in Neural Information Process-
ing Systems, vol. 20. Curran Associates, Inc., 2007.

[23] E. Snelson and Z. Ghahramani, “Sparse Gaussian Processes
using Pseudo-inputs,” in Advances in Neural Information Pro-
cessing Systems, vol. 18. MIT Press, 2005.

[24] E. J. Nyström, “über Die Praktische Auflösung von Integral-
gleichungen mit Anwendungen auf Randwertaufgaben,” Acta
Mathematica, vol. 54, no. none, pp. 185–204, Jan. 1930.

[25] S. Sun, J. Zhao, and J. Zhu, “A review of Nyström methods for
large-scale machine learning,” Information Fusion, vol. 26, pp.
36–48, Nov. 2015.

[26] M. L. Stein, Interpolation of Spatial Data: Some Theory for
Kriging. Springer Science & Business Media, Jun. 1999.

[27] G. E. Hinton and D. Van Camp, “Keeping the neural networks
simple by minimizing the description length of the weights,” in
Proceedings of the Sixth Annual Conference on Computational
Learning Theory, 1993, pp. 5–13.

[28] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan,
“An Introduction to MCMC for Machine Learning,” Machine
Learning, vol. 50, no. 1, pp. 5–43, Jan. 2003.

[29] M. D. Hoffman and A. Gelman, “The No-U-Turn sampler:
Adaptively setting path lengths in Hamiltonian Monte Carlo.”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1593–1623, 2014.

[30] T. Chen, E. Fox, and C. Guestrin, “Stochastic Gradient Hamil-
tonian Monte Carlo,” in Proceedings of the 31st International
Conference on Machine Learning. PMLR, Jun. 2014, pp.
1683–1691.

[31] C. Peterson and E. Hartman, “Explorations of the mean field
theory learning algorithm,” Neural Networks, vol. 2, no. 6, pp.
475–494, Jan. 1989.

[32] A. Graves, “Practical Variational Inference for Neural Net-
works,” in Advances in Neural Information Processing Systems,
vol. 24. Curran Associates, Inc., 2011.

[33] H. Ritter, A. Botev, and D. Barber, “A Scalable
Laplace Approximation for Neural Networks,”
https://iclr.cc/Conferences/2018/Schedule?showEvent=224,
Vancouver, Canada, Jan. 2018.

[34] D. Barber and C. M. Bishop, “Ensemble learning in Bayesian
neural networks,” Nato ASI Series F Computer and Systems
Sciences, vol. 168, pp. 215–238, 1998.

[35] T. Pearce, F. Leibfried, and A. Brintrup, “Uncertainty in Neural
Networks: Approximately Bayesian Ensembling,” in Proceed-
ings of the Twenty Third International Conference on Artificial
Intelligence and Statistics. PMLR, Jun. 2020, pp. 234–244.

[36] M. Lazaro-Gredilla and A. R. Figueiras-Vidal, “Marginalized
Neural Network Mixtures for Large-Scale Regression,” IEEE
Transactions on Neural Networks, vol. 21, no. 8, pp. 1345–
1351, Aug. 2010.

[37] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sun-
daram, M. Patwary, M. Prabhat, and R. Adams, “Scalable
Bayesian Optimization Using Deep Neural Networks,” in Pro-
ceedings of the 32nd International Conference on Machine
Learning. PMLR, Jun. 2015, pp. 2171–2180.

[38] N. Weber, J. Starc, A. Mittal, R. Blanco, and L. Màrquez,
“Optimizing over a bayesian last layer,” in NeurIPS Workshop
on Bayesian Deep Learning, 2018.

[39] C. Riquelme, G. Tucker, and J. Snoek, “Deep bayesian bandits
showdown,” in International Conference on Learning Repre-
sentations, 2018.

[40] R. Pinsler, J. Gordon, E. Nalisnick, and J. M. Hernández-
Lobato, “Bayesian Batch Active Learning as Sparse Subset
Approximation,” in Advances in Neural Information Processing
Systems, vol. 32. Curran Associates, Inc., 2019.

[41] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih, “The
uncertainty bellman equation and exploration,” in International
Conference on Machine Learning, 2018, pp. 3836–3845.

[42] S. W. Ober and C. E. Rasmussen, “Benchmarking the Neural
Linear Model for Regression,” arXiv:1912.08416 [cs, stat],
Dec. 2019.

[43] A. V. Oppenheim, A. S. Willsky, S. H. Nawab, w. Hamid, and

G. M. Hernández, Signals & Systems. Pearson Educación,
1997.

[44] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes
for Machine Learning, 2nd ed. MIT Press, 2006.

[45] C. Bishop, Pattern Recognition and Machine Learning.
Springer, Jan. 2006.

[46] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv:1412.6980 [cs], Jan. 2017.

[47] D. Dua and C. Graff, “UCI Machine Learning Repository,”
http://archive.ics.uci.edu/ml, 2017.

[48] I. C. Yeh, “Modeling of strength of high-performance con-
crete using artificial neural networks,” Cement and Concrete
Research, vol. 28, no. 12, pp. 1797–1808, Dec. 1998.

[49] H. Kaya, P. Tüfekci, and F. S. Gürgen, “Local and global
learning methods for predicting power of a combined gas &
steam turbine,” in Proceedings of the International Conference
on Emerging Trends in Computer and Electronics Engineering
ICETCEE, 2012, pp. 13–18.

[50] P. Tüfekci, “Prediction of full load electrical power output of a
base load operated combined cycle power plant using machine
learning methods,” International Journal of Electrical Power &
Energy Systems, vol. 60, pp. 126–140, Sep. 2014.

[51] A. Tsanas and A. Xifara, “Accurate quantitative estimation of
energy performance of residential buildings using statistical
machine learning tools,” Energy and Buildings, vol. 49, pp.
560–567, Jun. 2012.

[52] A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, and M. Fi-
gari, “Machine learning approaches for improving condition-
based maintenance of naval propulsion plants,” Proceedings of
the Institution of Mechanical Engineers, Part M: Journal of
Engineering for the Maritime Environment, vol. 230, no. 1, pp.
136–153, 2016.

[53] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Mod-
eling wine preferences by data mining from physicochemical
properties,” Decision Support Systems, vol. 47, no. 4, pp. 547–
553, Nov. 2009.

[54] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Op-
tuna: A Next-generation Hyperparameter Optimization Frame-
work,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ser.
KDD ’19. New York, NY, USA: Association for Computing
Machinery, Jul. 2019, pp. 2623–2631.

APPENDIX

A. Fourier Series of the Periodic ReLU

Using the ReLU, we define the Periodic ReLU
(PeReLU) ReLU���(x) := ReLU

(
[x+ T̃]2T̃ − T̃

)
, where

[·]U is the modulus operator w.r.t. U defined as [·]U :
R → R+ : u 7→ min

{
u + zU : u + zU ≥ 0, z ∈ Z

}
.

The ±T̃ in the PeReLU definition ensures that the
PeReLU still has the usual ReLU properties in a region
around zero, i.e., that ReLU���(x) = 0 for x < 0 and
ReLU���(x) = x for x > 0. The coefficients of the
Fourier series am and bm for m > 0 are then given

Objective
-8.0

-6.7

-5.4

-4.1

-2.8

Half-Period
0.0

2.5

5.0

7.5

10.0

Number of Harmonics
1

8

16

24

32

−8

−7

−6

−5

−4

−3

O
bj

ec
tiv

e

Figure 3: Parallel coordinates plot of the hyper-
parameter’s values connecting specific Optuna [54] trials.
It can be seen that the half-period value has a major
influence on the object (leftmost axis). Trial was run on
the UCI [47] Boston Housing data set with random RFSF
initialization. Objective is the negative log-likelihood on
the test data.

by solving the following integrals:

am =
1

T̃

∫ T̃

−T̃
ReLU���(x) cos

(
mπx/T̃

)
dx

=
T̃ (−1)m − T̃

m2π2

bm =
1

T̃

∫ T̃

−T̃
ReLU���(x) sin

(
mπx/T̃

)
dx

= − T̃ (−1)m

mπ

For m = 0, the coefficients are simply a0 = T̃ /2 and
b0 = 0.

B. Influence of the Half-Period

We noticed a major influence of the half-period during
hyper-parameter optimization using Optuna [54]. That
is, the higher the (initial) value of T̃ , the higher the
objective (see fig. 3). As a consequence we included
the half-period into the set of (hyper-) parameter that
are optimized using empirical Bayes, however, this
phenomenon is still in place. This is also reflected in
Optuna’s importance rating of 0.86.

C. Result for the Remaining UCI Data Sets

The results for the remaining UCI data sets not cov-
ered in table III are given in table IV.

Data Set
Model Energy Kin8nm Naval Protein Wine

L
og

-L
ik

. RFSF Random -0.70±0.02 0.68±0.05 -78.19± 69.72 -2.94± 0.03 -0.11±0.07
ReLU -0.74±0.02 0.97±0.03 -172.57±104.83 -629.05±384.60 -0.11±0.06

SH -0.74±0.02 0.52±0.07 -62.69± 55.40 -2.96± 0.03 0.01±0.06
GP SE -0.68±0.02 -0.22±0.24 6.91± 0.15 -2.89± 0.00 -0.84±0.05

RFF -0.69±0.02 0.75±0.04 -1941.56±248.64 -2.90± 0.00 -0.89±0.04

R
M

SE

RFSF Random 0.48±0.02 0.07±0.00 0.01±0.00 3.97±0.02 0.64±0.01
ReLU 0.49±0.02 0.07±0.00 0.01±0.00 4.00±0.03 0.66±0.01

SH 0.49±0.02 0.08±0.00 0.01±0.00 3.97±0.02 0.65±0.01
GP SE 0.48±0.02 0.08±0.00 0.00±0.00 4.34±0.01 0.63±0.01

RFF 0.48±0.01 0.07±0.00 0.02±0.00 4.42±0.01 0.63±0.01

Table IV: Refer to table III for a description of the provided values.

	Introduction
	Related Work
	Preliminaries
	Fourier Series
	Gaussian Process Regression

	Methods
	Random Fourier Features
	Random Fourier Series Features

	Evaluation
	Implementation
	Experiment Setup
	Results
	Synthetic Data Sets
	UCI Data Sets
	Cartpole Data Set

	Conclusion
	Hypothesis 1
	Hypothesis 2
	Future Work

	References
	Appendix
	Fourier Series of the Periodic ReLU
	Influence of the Half-Period
	Result for the Remaining UCI Data Sets

