
Variational Autoencoders for
Koopman Dynamical Systems
Variational Autoencoder für Koopman-Dynamische Systeme
Bachelor thesis by Fabian Damken
Date of submission: November 20, 2020

1. Review: Jan Peters
2. Review: Joe Watson
Darmstadt

Variational Autoencoders for Koopman Dynamical Systems
Variational Autoencoder für Koopman-Dynamische Systeme

Bachelor thesis by Fabian Damken

1. Review: Jan Peters
2. Review: Joe Watson

Date of submission: November 20, 2020

Darmstadt

Abstract

In control theory, we try to control a system to reach a specific goal, for example for a pendulum to stand
upright. For linear dynamical systems, highly evolved control methods like the linear quadratic regulator
exist. In the case of nonlinear systems, however, we do not have such control methods. This is the reason
why linearization of a nonlinear system is quite appealing as it offers a way for us to apply methods of linear
control theory to nonlinear systems. Typical linearization approaches like small angle approximation have
the disadvantage of only being valid locally. Koopman theory offers a way to linearize a system globally by
mapping the nonlinear behavior to an infinite-dimensional embedding using nonlinear observation functions.
In this embedding, the dynamics behave linearly with an infinite-dimensional operator called the Koopman
operator, advancing the observations forward in time.
Prior work has studied the Koopman operator and how to approximate it using a finite-dimensional linear
embedding and to find the Koopman eigenfunctions. These functions only scale when applying the Koopman
operator to it, spanning an invariant subspace of the embedding. Most of the prior work employed a
deterministic view on the Koopman operator which makes gauging the uncertainty of the system impossible.
In this thesis we present an algorithm based on the theory of Linear Gaussian Dynamical Systems by replacing
the linear with nonlinear observations. This algorithm, the Koopman inference algorithm, is an Expectation-
Maximization algorithm that alternates between estimating the linear latent state, and optimizing the latent
state dynamics and the observation function. With this approach the algorithm will be able to approximate
the dynamics of nonlinear systems using a finite-dimensional linear embedding.
We can show that our algorithm performs decently on common nonlinear environments like a pendulum,
successfully finding an embedding where the dynamics behave linearly.

C

Acknowledgments

First of all I would like to thank my supervisor Joe Watson who not only introduced the whole Koopman
theory to me and had the idea for this topic, but who always provided strong and invaluable feedback. I would
also like to thank him for impressively quick responses to any question I had.
Furthermore I would like to thank Jan Peters, who first aroused my interest in robotics and machine learning.
I want to thank my fellow student Claas for always being there when I had any question and providing
feedback from the beginning. I also want to express my appreciation for many helpful discussions in the past.
I want to thank Claas, Heiko, Stefanie and Tim for proofreading this thesis and providing feedback to the last
minute. I also want to thank my parents for their support especially throughout my studies and the time of
writing this thesis.

D

Erklärung zur Abschlussarbeit gemäß §22 Abs. 7 APB TU Darmstadt

Hiermit versichere ich, Fabian Damken, die vorliegende Bachelorarbeit gemäß §22 Abs. 7 APB der TU
Darmstadt ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben.
Alle Stellen, die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch vorliegt, der dazu führt,
dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird. Abschlussarbeiten dürfen
nur einmal wiederholt werden.
Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische Fassung dem vorge-
stellten Modell und den vorgelegten Plänen.

Darmstadt, November 20, 2020
Fabian Damken

E

Contents

1. Introduction 1

2. Related Work 3

3. Preliminaries 4
3.1. Dynamical Systems . 4
3.2. Koopman Theory of Dynamical Systems . 7
3.3. The Expectation-Maximization Algorithm . 8
3.4. Variational Autoencoders and the Evidence Lower Bound . 10

4. Inference in Dynamical Systems 12
4.1. Hidden Markov Models and LGDS . 12
4.2. Inference: Filtering and Smoothing . 13
4.3. Cubature Rules and Filtering . 15

5. The Koopman Inference Algorithm 22
5.1. Formulating and Solving the Inference Problem using an EM Algorithm 24
5.2. Implementation . 28

6. Experiments 30
6.1. Setup . 30
6.2. Results . 34

7. Discussion 52
7.1. Model Performance . 52
7.2. Comparison with Related Work . 60
7.3. Future Work . 68

8. Conclusion 70

A. Notes on the Koopman Inference Algorithm 75
A.1. Full Derivation . 75
A.2. Exactness for Linear Observations . 87

B. Experiments and Discussion 91
B.1. Plots for Running on the CPU or GPU . 91
B.2. Plots for Single- and Multi-Sequence Learning . 91
B.3. Remaining Plots . 91

C. Miscellaneous 105

I

Algorithms, Figures, Listings and Tables

List of Algorithms

4.1. Spherical-Radial Cubature Kalman Filter . 19
4.2. Spherical-Radial Cubature Rauch-Tung-Striebel Smoother . 19
4.3. Square-Root Cubature Kalman Filter . 21
4.4. Square-Root Cubature Rauch-Tung-Striebel Smoother . 21

5.1. Koopman Inference . 27

List of Figures

3.1. Illustration of a simple harmonic oscillator . 5
3.2. Illustration of an inverse pendulum . 5
3.3. Comparison of the small angle approximate solution of the inverse pendulum and a numerical

solution . 6
3.4. State transition model of a Koopman dynamical system . 8
3.5. Illustration of a variational auto-encoder . 11

4.1. Illustration of a hidden Markov model . 13
4.2. Illustration of a LGDS . 13
4.3. Illustration of the differences between prediction, filtering and smoothing 14
4.4. Illustrative application of the spherical-radial cubature rule to themapping from polar coordinate

to Cartesian coordinates . 17

5.1. Side-by-side comparison of a LGDS and a Koopman dynamical system 23
5.2. Graphical model of the Koopman inference model . 23

6.1. Illustration of the cartpole environment . 32

II

6.2. Illustration of the double pendulum environment . 33
6.3. Rollout of the proof-of-concept LGDS experiment for 3 latent dimensions 36
6.4. Error of the smoothed trajectory on the training data of the pendulum experiment 36
6.6. Rollout of the pendulum experiment for 10 latent dimensions 37
6.5. Errors on the pendulum environment for different latent dimensions 38
6.7. Error of the smoothed trajectory on the training data of the damped pendulum experiment . . 39
6.8. Errors on the damped pendulum environment for different latent dimensions 40
6.9. Rollout of the damped pendulum experiment for 10 latent dimensions 41
6.10.Error of the smoothed trajectory on the training data of the Gym pendulum experiment 42
6.11.Errors on the Gym pendulum environment for different latent dimensions 43
6.12.Rollout of the Gym pendulum experiment for 4 latent dimensions 44
6.13.Error of the smoothed trajectory on the training data of the cartpole experiment 45
6.14.Errors on the cartpole environment for different latent dimensions 46
6.15.Rollout of the cartpole experiment for 10 latent dimensions 48
6.16.Error of the smoothed trajectory on the training data of the double pendulum experiment . . . 49
6.17.Errors on the double pendulum environment for different latent dimensions 50
6.18.Rollout of the double pendulum experiment for 18 latent dimensions 51

7.1. Total energy of the undamped pendulum . 53
7.2. Latent rollout of the pendulum experiment for 10 latent dimensions 54
7.3. Rollout of the pendulum experiment for 9 latent dimensions 54
7.4. Total energy of the damped pendulum . 56
7.5. Latent rollout of the damped pendulum experiment for 10 latent dimensions 57
7.6. Latent rollout of the Gym pendulum experiment for 6 latent dimensions 58
7.7. Latent rollout of the Gym pendulum experiment for 7 latent dimensions 58
7.8. Rollout of the pendulum environment of the DVK model . 62
7.9. Rollout of the cartpole environment of the DVK model with angular features 64
7.10.Rollout of the cartpole environment of the DVK model with angular features 65
7.11.Rollout of the double pendulum environment of the DVK model 66

B.1. Rollout of the double pendulum experiment that ran on the CPU 92
B.2. Rollout of the double pendulum experiment that ran on the GPU 93
B.3. Rollout of the damped pendulum experiment learning on a single observation sequence 93

III

B.4. Rollout of the damped pendulum experiment learning on two observation sequences 94
B.5. Rollout of the pendulum experiment for 2 latent dimensions 95
B.6. Rollout of the pendulum experiment for 14 latent dimensions 95
B.7. Rollout of the damped pendulum experiment for 2 latent dimensions 96
B.8. Rollout of the damped pendulum experiment for 30 latent dimensions 96
B.9. Rollout of the Gym pendulum experiment for 2 latent dimensions 97
B.10.Rollout of the Gym pendulum experiment for 7 latent dimensions 98
B.11.Rollout of the cartpole experiment for 2 latent dimensions without confidence 99
B.12.Rollout of the cartpole experiment for 2 latent dimensions with confidence 100
B.13.Rollout of the cartpole experiment for 10 latent dimensions without confidence 100
B.14.Rollout of the cartpole experiment for 14 latent dimensions with confidence 101
B.15.Rollout of the cartpole experiment for 14 latent dimensions without confidence 102
B.16.Rollout of the double pendulum experiment for 3 latent dimensions 103
B.17.Rollout of the double pendulum experiment for 30 latent dimensions 104

List of Tables

4.1. Correspondence between the cubature and non-cubature Kalman filter 19
4.2. Correspondence between the cubature and non-cubature RTS filter 20

7.1. Comparison of the errors of all environment we benchmarked DVK and Koopman inference on 67

C.1. Notations used for linear Gaussian dynamical systems in different papers 106

IV

Abbreviations, Operators and Symbols

List of Abbreviations

Notation Description
AEVB Auto-Encoding Variational Bayes

CPU Central Processing Unit

DMD Dynamic Mode Decomposition
DVK Deep Variational Koopman

eDMD extended Dynamic Mode Decomposition
e.g. for example
EKF Extended Kalman Filter
ELBO Evidence Lower Bound
EM Expectation-Maximization

GD Gradient Descent
GPU Graphics Processing Unit

HMM Hidden Markov Model

i.e. that is
i.i.d. independently and identically distributed
iLQR iterative Linear Quadratic Regulator
IVP Initial Value Problem

KL Kullback-Leibler

LGDS Linear Gaussian Dynamical System
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LSTM Long Short-Term Memory

MAP Maximum A-Posteriori

V

MBRL Model-Based Reinforcement Learning
MCMC Markov Chain Monte Carlo
ML Maximum Likelihood
MPC Model-Predictive Control
MSE Mean Squared Error

NRMSE Normalized Root Mean Squared Error

ODE Ordinary Differential Equation

PDE Partial Differential Equation

ReLU Rectified Linear Unit
RK4 4-th Order Runge-Kutta Method
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RTS Rauch-Tung-Striebel

UT Unscented Transformation

VAE Variational Auto-Encoder

w.r.t. with respect to

List of Operators

Notation Description Operator
Cov Covariance Cov[·]

SRC
Evaluation of spherical-radical cubature rule of function f
under mean µ and covariance Σ. SRC [f ;µ,Σ]

E Expectation value E[·]

diag
Represents a n-dimensional diagonal matrix with diagonal
entries αi, i = 1, 2, · · · , n. diag(α1, α2, · · · , αn)

tr Trace of a matrix tr(·)

logk
Logarithm of base k. If no base is given, the natural
logarithm. logk(·)

VI

1. Introduction

A dynamical system often describes some kind of physical process, e.g. a pendulum swinging around a fixed
point or two pendulums swinging together. However, these systems often exhibit complicated and in some
cases even chaotic movement. In (optimal) control theory, we try to control these systems to accomplish a
desired state, e.g. to stand upright. As we do not necessarily have the equations of motion for complex systems
(e.g. with friction models), we have to learn the model in a process called model learning.

Motivation Learning nonlinear models is a tedious task. For optimal control, there are highly evolved
methods like Linear Quadratic Regulator (LQR) to get an optimal trajectory. Unfortunately, such solution
theories do not exist for nonlinear models, even if we had models that perfectly describe the reality. Most
methods used for controlling dynamics systems, e.g. Model-Predictive Control (MPC) and iterative Linear
Quadratic Regulator (iLQR), use approximations and locally linear dynamics models.

This motivates globally linear embeddings that we can project the nonlinear dynamics to. This enables doing
control in the linear embedding rather than the complex nonlinear state space, yielding better overall results.

Approach Finding such a linear embedding to perform control in is theoretically backed by the Koopman
theory [Koo31], stating that every dynamical system can be lifted into a linear embedding. Such methods
have proven to be useful in the past [KKB20, HHV20, MWK19], however, most of the approaches do not
tackle the problem from a probabilistic view or have very complex models.

Contribution Our contribution is an extension of the well-known model learning algorithm for Linear
Gaussian Dynamical Systems (LGDSs) [GH96, Min99] by using nonlinear measurements. Backed by Koopman
theory [Koo31] and results from prior work [LKB18], we assume the existence of an observation function
that maps from a linear Koopman embedding to the nonlinear state space, allowing model predictions of the
complex underlying dynamics using linear transformations.

We evaluate our model on well-known environments like the (damped) pendulum, cartpole and a double
pendulum. Finally, we examine the model performance on an error-basis and explore the influence of
hyperparameters on the performance. Also, we set our results in relation to results from related work and
evaluate them.

Goals Our goal is to provide a compact and easy-to-train model for learning nonlinear dynamical systems
in a linear embedding with decent forecasting abilities. This lays the groundwork for future modification in
control and Bayesian treatment of the model.

1

Outline In the chapter “Preliminaries” we give an overview over the basic techniques we use throughout
this thesis, namely dynamical systems, the Koopman operator and the expectation-maximization algorithm.
Afterwards, we give an introduction to inference in dynamical systems in the chapter “Inference in Dynamical
Systems”, laying the groundwork for the following chapters that include our contribution. In chapter “The
Koopman Inference Algorithm”, we state the problem to solve formally and propose a method to solve the
upcoming inference problem using an approximate nonlinear expectation-maximization algorithm utilizing
cubature rules. We will also cover implementation details and assess the numerical stability of our algorithm.
We will cover experiments and experimental results in the chapter “Experiments” and discuss the results in
the chapter “Discussion”, giving also some propositions for future work. Finally, we summarize all results in
the chapter “Conclusion”.

2

2. Related Work

In this chapter we put our work into the context of other papers, most of which use the Koopman operator or
a similar approach for learning a linear embedding of nonlinear dynamical systems.
Starting with work from 2018 [LKB18], Lusch et al. utilize a classic autoencoder for finding a linear embedding.
They use the Mean Squared Error (MSE) of the output of the decoder with the input to the encoder to force
the embedding to be decodeable. In addition to this simple loss function, they add a matrix to approximate
the Koopman operator between the two neural networks and put a loss function on the outcome compared
with the next time step, forcing the embedding to advance linearly. A similar loss function is put on the
embedding directly to enforce that not the autoencoder but the Koopman matrix forwards the states in time.
They also add another loss function for regularization. All these loss functions are then put together with
hand-tuned weights to a single loss function the two neural networks are trained on via gradient descent.
Compared to our work, however, they do not impose a probabilistic view on the embedding or the decoded
values, making uncertainty-aware control impossible. Another common approach of identifying the Koopman
eigenfunctions is using Dynamic Mode Decomposition (DMD) or extended Dynamic Mode Decomposition
(eDMD) [BBPK16, KKB20, WKR15]. These approaches seek for a parsimonious representation in the linear
embedding rather than reaching for high forecasting and state estimation precision.
An approach closer to ours is from 2019 [MWK19] and also treats the Koopman embedding probabilistically
by not modeling the Koopman observations directly but treating the linear embedding as a series of states to
be inferred. Additionally, they assume control inputs to be present in the linear embedding in the form of an
additive control with a control matrix. Their model uses six neural networks for encoding the dynamics:

• the decoder network to model the decoding of the embedding states back to the nonlinear manifold,
• the temporal encoder network using a bidirectional Long Short-Term Memory (LSTM) summarizing the

time evolution,
• the initial observation inference network to infer the initial observation,
• the observation encoder network that is a Recurrent Neural Network (RNN) taking the observations and

outputting an encoding of the time evolution,
• an observation inference network encoding a distribution over the observations given the output of the

temporal and observation encoder networks and the conditional prior network which outputs the next
observation distribution conditioned on the previous one.

Compared to our work, their model is far more complex with more neural networks and way more parameters,
possibly leading to higher overfitting. On the other hand, it is possible using (uncertainty-aware) MPC on
their model which is (currently) not possible using the Koopman Inference algorithm.
Non-Koopman-related work includes the recurrent Kalman filter [BPG+19] which introduces a new type
of RNNs, the recurrent Kalman network. This network learns high-dimensional linear embeddings with
factorized covariances, leading to simple Kalman update rules with scalar operations.

3

3. Preliminaries

In this chapter we will introduce the basics of this work both to clarify notation and to introduce the reader to
potentially unknown concepts and methodologies. We will start by having a look at dynamical systems that
form the basis of this thesis.

3.1. Dynamical Systems

A dynamical system [Bir27] is a (physical) system that evolves over time t and is completely defined by the
values of m real variables

x1, x2, · · ·, xm ←→ x =
[︁
x1 x2 · · · xm

]︁T
called the state and often written in vector form. Given the differentiability of these values, we can also study
their rate of change (often referred to as the “velocity”) and the rate of change of the velocity (often referred
to as the “acceleration”):

ẋ =
dx

dt
ẍ =

d2x

dt2

Describing these systems is possible using differential equations, both ordinary and partial ones. A general
k-th order Ordinary Differential Equation (ODE) is given by an implicit equation

0 = F
(︁
x,x(1),x(2), · · ·,x(k−1),x(k); t

)︁
, x(l) :=

dlx

dtl
(3.1)

which establishes a connection between the state itself and its time derivatives. We call a function x(t) a
solution of an ODE if its derivatives fulfill the given ODE (3.1). In all of the following, we assume to have
explicit, autonomous, first order ODEs. This is valid because we can transform every explicit higher order
ODE into a system of first order ODEs. Also we can introduce another “clock state” which makes our ODE
autonomous (i.e. not explicitly time-dependent).
The solution theory for linear ODEs is highly evolved and solutions exist for nearly every possible ODE. But
for nonlinear ODEs, we do not have such solution theories. With the exception of some rare cases, nonlinear
ODEs are not tractable. Hence, we often need approximations for the nonlinear case. Some well-known
approaches for these approximations are e.g. small angle approximation for Sines and Cosines. In small angle
approximations, we Taylor-expand sin/cos at ϕa = 0 and cut all higher order terms:

sin(ϕ) = ϕ− ϕ3

3!
+

ϕ5

5!
+ · · ·⏞ ⏟⏟ ⏞

higher order terms

≈ ϕ

cos(ϕ) = 1− ϕ2

2!
+

ϕ4

4!
− ϕ6

6!
+ · · ·⏞ ⏟⏟ ⏞

higher order terms

≈ 1

4

m

k x

Figure 3.1.: Illustration of a simple harmonic oscillator with mass m, spring stiffness k and position x that is
not affected by any external force like gravity. The mass is in equilibrium if x = 0.

m

ℓ1
ϕ

g

Figure 3.2.: Illustration of an inverse pendulum with mass m and displacement ϕ that is only affected by
gravity and no other external force. The mass is in equilibrium for both ϕ = 0 and ϕ = π, where
the former is an unstable equilibrium.

We now look at two examples of dynamical systems, the first of which is linear and second which is nonlinear.

Harmonic Oscillator The simple harmonic oscillator is a linear system that describes the dynamical system
of a mass m that is attached to a spring that is following Hooke’s Law with stiffness k (see Figure 3.1). This
harmonic oscillator is described by the ODE

mẍ = −kx ⇐⇒ ẍ = − k

m
x (3.2)

where x and ẍ are the position and acceleration of the mass, respectively. Note that if x = 0, the mass is in
equilibrium and no force is acting on it.

By using basic results in the solution theory of linear ODEs, we see that the general solution is given as

x(t) = A cos
(︂
t
√︁

k/m+ ϕ
)︂

with the amplitude A and the phase ϕ (see Appendix C for the derivation of the solution). As neither gravity
nor damping or other external forces are involved in the dynamical system, the motion continues forever with
a non-changing amplitude.

Inverse Pendulum The inverse pendulum describes the dynamical system of a mass m that is attached to
a rigid pole of length L which can freely swing around a suspension point (see Figure 3.2). The pendulum
stands upright if ϕ = 0 and its equation of motion is described by the ODE

ϕ̈ =
g

L
sin(ϕ)

5

0 2 4 6 8 10
t

0

2

3
2

2
Numerical and Approximate Solution for (0) = 5°, = 0

Numerical Solution (Radau)
Small Angle Solution (Analytical)
Distance greater than 0.001

(a) Trajectories of two solution strategies to the inverse pen-
dulum, where the blue is a numerical solution of the
actual motion of equation (solved using the Radau IIA
method [GH01, p. 72]) and the orange one is the ana-
lytically computed solution linearized ODE. The latter is
linearized using small angle approximation. The dashed
gray vertical line shows when the distance tolerance of
ε = 10−3 is exceeded.

0 2 4 6 8 10
t

10 15

10 12

10 9

10 6

10 3

100

103

106

(
)2

Squared Difference of Solutions for (0) = 5°, = 0
Squared Difference
Distance greater than 0.001

(b) Differences between the small angle approximation and
the numerical solution of the ODE. The dashed gray
vertical line shows when the distance tolerance of ε =
10−3 is exceeded.

Figure 3.3.: Comparison of a numerical solution to the ODE of the inverse pendulum given in (3.3) and the
analytical solution of the linearized ODE given in (3.4). A tolerance value of ε = 10−3 is used to
show when both solutions diverge from each other.

where g, L, ϕ and ϕ̈ describe the gravity acceleration, pole length, displacement and acceleration of the mass,
respectively. Note that if ϕ = 0, the mass is in an unstable equilibrium and no force is acting on it.

In comparison to the harmonic oscillator (section 3.1), this differential equation is nonlinear. And, even for
the case with unit gravity acceleration g = 1 and unit pole length L = 1, where the ODE looks really simple

ϕ̈ = sin(ϕ) (3.3)

it is not tractable analytically (i.e. there exists no solution in closed form).

Still, we can apply the small angle approximation introduced before (in this case, sin(ϕ) ≈ ϕ) which yields
the simple ODE

ϕ̈ ≈ ϕ (3.4)
solved by

ϕ(t) =
1

2
e−t
(︁
ϕ0 + e2tϕ0 − ϕ̇0 + e2tϕ̇0

)︁
where ϕ0 and ϕ̇0 are the initial displacement and velocity, respectively.

However, this small angle approximation can only forecast small displacements ϕ ≪ π/2. And, as the
equilibrium at ϕ = 0 is unstable, the approximation becomes worse as time goes by because the pendulum
falls down. This behavior is shown in Figure 3.3.

6

3.1.1. Discrete-Time Dynamical Systems

In comparison to continuous-time dynamical systems described by ODEs, discrete-time systems are described
by a dynamics function F : Rn → Rn advancing all states forward in time:

xt+1 = F(xt)

But we should note that, while seeming more restrictive, discrete-time dynamical systems are more gen-
eral [BBPK16] than continuous-time systems as we can discretize every continuous-time system

ẋ = f(x)

as a discrete-time dynamical system
xt+1 = F(xt)

using the state dynamics function

F
(︁
x(t0)

)︁
= x(t0 +∆t) = x(t0) +

∫︂ t0+∆t

t0

f
(︁
x(τ)

)︁
dτ

where ∆t is called the discretization interval and xk = x(k∆t).

3.2. Koopman Theory of Dynamical Systems

Our first contribution is based on the need of a linearization technique that generalizes globally. We have seen
this need in the previous chapter when looking at simple nonlinear systems and small angle approximations.
This brings us directly to Koopman theory, original introduced by B. Koopman [Koo31] in the context of
Hamiltonian systems and transformations in Hilbert spaces. Considering a nonlinear discrete-time dynamical
system

xt+1 = F(xt), F : Rk → Rk

and observations h : Rp → Rp of this system, i.e. yt := h(xt), the infinite-dimensional Koopman operator K
advances all of the measurements forward in time. This relation can also be expressed as the composition

Kh := h ◦ F ⇐⇒ Kh(xt) = h
(︁
F(xt)

)︁
= h(xt+1)

and can be visualized as a transition diagram between the states (see Figure 3.4). This time evolution works for
every possible measurement functionh at any point of the system spaceRk [BBPK16]. All possible measurement
functions h span an infinite-dimensional Hilbert space H. A finite set of measurements h1,h2, · · · ,hp that
span an invariant subspace Ĥ ⊂ H can be considered as a basis of that subspace. That is, applying the
Koopman operator to a linear combination of these functions keeps them in the subspace:

h = α1h1 + α2h2 + · · ·+ αpgp

Kh = β1h1 + β2h2 + · · ·+ βphp

If that is possible, we can restrict the Koopman operator onto Ĥ. Functions that both span the subspace
Ĥ and do only scale when applying the Koopman operator, i.e. Kϕ = λϕ are called eigenfunctions of the
Koopman operator. Finding these eigenfunctions is extremely desirable as it allows us to get a finite Koopman
operator matrix K globally linearizing the dynamical system F. However, for this thesis, we do not seek the
eigenfunctions directly but an approximation of the inverse observation function to forecast the dynamical
system.

7

y1 y2 y3 · · · yT

x1 x2 x3 · · · xT

K K K K

F F F F

h h h hh−1 h−1 h−1 h−1

Figure 3.4.: Illustration of the transition diagram imposed by applying the Koopman operator K to system
dynamics F. The observation function h is forwarded in time linearly by the Koopman operator,
while the states x are forwarded nonlinearly. The dashed lines and h−1 indicate that we want to
recover the original state from the linear system.
Adopted from [BBPK16].

3.3. The Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm, first introduced by Ceppellini et al. [CSS55] and popularized
by Dempster et al. [DLR77] can be used for tackling the following problem: Assuming some model with latent
(hidden) states x, observations y and model parameters θ, we want to maximize the likelihood p(y |θ) w.r.t.
the latent states x and the parameters θ. However, the marginal distribution

p(y |θ) =
∫︂
p(x,y |θ) dx

is generally intractable. As usual on maximum likelihood approaches, it is useful not to maximize the likelihood
directly, but to maximize the log-likelihood

L(θ) := log p(y |θ) = log

∫︂
p(x,y |θ) dx

instead. This yields the same maximum as the logarithm is a monotonically increasing function. By introducing
an auxiliary probability distribution q(x |y) over the latent variables, we can rewrite the marginal and find a
lower bound on L by using Jensen’s inequality [Jen06]:

L(θ) = log

∫︂
p(x,y |θ) dx

= log

∫︂
q(x |y)p(x,y |θ)

q(x |y)
dx

≥
∫︂

q(x |y) log p(x,y |θ)
q(x |y)

dx

=

∫︂
q(x |y) log p(x,y |θ) dx−

∫︂
q(x |y) log q(x |y) dx =: LEM[q,θ] (3.5)

This draws a lower bound LEM[q,θ] on the log-likelihood L(θ) we can maximize instead. Doing this simul-
taneously increases the log-likelihood. Note that this lower bound is in fact a functional of the distribution
q(x |y).
The EM algorithm now iteratively maximizes the lower bound and thus indirectly maximizes the original
objective, the likelihood p(y |θ). The E and M step are as follows:

8

E-Step Infers the auxiliary distribution q(x |y) using the current estimations of the parameters
θ by maximizing the lower bound with respect to (w.r.t.) the auxiliary distribution.

M-Step Infers the parameters θ using the current auxiliary distribution by maximizing the
lower bound w.r.t. the parameters.

Expressed in equations with the index ·(n) to denote the values of the n-th iteration, we get the procedure
which will be repeated until convergence:

E-Step q(n+1) = argmax
q
LEM

[︁
q,θ(n)

]︁
M-Step θ(n+1) = argmax

θ
LEM

[︁
q(n+1),θ

]︁
Additionally, the E-step has the constraint that q(x |y) really is a probability distribution, so it must integrate
to one: ∫︂

q(x |y) dx = 1

We can incorporate this into the maximization, e.g. by using Lagrange multipliers. Using a bit of variational
calculus, it can be shown [Bea03] that the maximization is gained by choosing the auxiliary distribution
q(x |y) to be the same as the distribution p(x |y,θ). That is, we set q(n+1)(x |y) = p

(︁
x
⃓⃓
y,θ(n)

)︁ while holding
the parameters θ fixed. This maximization turns the inequality (3.5) into an equality.

For the M-step, we keep the auxiliary distribution fixed and maximize the lower bound w.r.t. the parameters θ.
As this involves taking the derivative of LEM w.r.t. θ, we can safely omit the right hand side of the lower bound
as it does not depend on θ. Hence, we get the M-step as:

θ(n+1) = argmax
θ
LEM

[︁
q(n),θ

]︁
= argmax

θ

∫︂
q(n)(x |y) log p(x,y |θ) dx

= argmax
θ

∫︂
p
(︁
x
⃓⃓
y,θ(n)

)︁
log p(x,y |θ) dx

= argmax
θ

Ep(x |y,θ(n))[log p(x,y |θ)]

The quantity to optimize, Q(θ) := E[log p(x,y |θ)], is also called the expected complete log-likelihood as it
involves both the observables and the latent variables.

As shown in [Bea03], the lower bound turns into an equality after the E-step. Hence, we are guaranteed
to always rise the log-likelihood after each EM iteration if we do not already have the optimal auxiliary
distribution and parameters. If this would be the case, both the E- and the M-step would not change anything,
so our log-likelihood is monotonically increasing. Also, we might not want to calculate the whole distribution
in the E-step, but we might want to restrict our computations to sufficient statistics that cover our whole
distribution. For the rest of this thesis, we know our distribution p(x |y,θ) is Gaussian, so we can assume the
auxiliary distribution to be Gaussian too, given that we set them equal. Hence, we only need to calculate the
mean and correlation or covariance of each variable to cover the whole distribution and to be able to proceed.

9

3.4. Variational Autoencoders and the Evidence Lower Bound

Variational autoencoders have been first introduced in the context of the Auto-Encoding Variational Bayes
(AEVB) algorithm by Kingma and Welling [KW14]. They tackle inference and learning in probabilistic models
with latent variables, similar to the EM algorithm. To keep the notation analogous to the derivation of the EM
algorithm, we deviate from the notation used in [KW14] in terms that we keep x as our latent variables and
y as the observables.

To perform inference, we want to maximize the (log-)likelihood

L(θ) := log pθ(y) = log

∫︂
pθ(x,y) dx

by maximizing the Evidence Lower Bound (ELBO) LELBO which we can derive by using Jensen’s inequal-
ity [Jen06]:

L(θ) = log

∫︂
pθ(x,y) dx

= log

∫︂
q(x |y,φ) pθ(x,y)

qφ(x |y)
dx

≥
∫︂
qφ(x |y) log

pθ(x,y)

qφ(x |y)
dx

=

∫︂
q(x |y,φ) log pθ(y |x)pθ(x)

qφ(x |y)
dx

=

∫︂
qφ(x |y)

pθ(x)

qφ(x |y)
dx+

∫︂
qφ(x |y)pθ(y |x) dx

= −DKL

(︁
qφ(x |y) ∥ pθ(x)

)︁
+ Eqφ(x |y)[pθ(y |x)] =: LELBO(θ,ψ) (3.6)

Note that we have introduced an auxiliary parametric distribution qφ(x |y) which originally leads to the first
integral to be an expectation and makes the application of Jensen’s inequality possible. We now maximize the
ELBO (3.6) w.r.t. the variational and generative parameters φ and θ respectively using the reparametrization
trick [KW14].

Shifting to Variational Auto-Encoders (VAEs), we now represent the auxiliary distribution qφ(x |y) using a
neural network with some prior pθ(x), e.g. a standard Gaussian pθ(x) = N (0, I) to keep the latents “close to
the center”, enforced by the Kullback-Leibler (KL) divergences in the ELBO. For a Gaussian latent distribution,
the neural network, called the amortization network, produces the mean and the diagonal covariance of q.
A second neural network is used for decoding the latent dimension, representing the decoding distribution
pθ(y |x). If we assume a Gaussian decoding distribution with constant variance, the right side of the ELBO (3.6)
just becomes the squared error between the decoding mean and the input y. Such a network architecture is
illustrated in Figure 3.5.

10

qφ(x |y) pθ(y |x)x

p(x)

y ỹ

Figure 3.5.: Illustration of a Variational Auto-Encoder with the amortization network on the left and the
decoder network on the right. The dotted line represents the influence of the prior to the latent
representation and the solid lines represent where the data flow, where y is the input and ỹ is
the (reconstructed) output.

3.4.1. Connection between EM and VAEs

As we have seen, the log-likelihood L(θ) gives rise to a lower bound LEM (3.5) and the ELBO LELBO (3.6):

LEM[q,θ] =

∫︂
q(x |y) log p(x,y |θ) dx−

∫︂
q(x |y) log q(x |y) dx

LELBO(θ,ψ) = −DKL

(︁
qφ(x |y) ∥ pθ(x)

)︁
+ Eqφ(x |y)[pθ(y |x)]

We saw that the two concepts are similar to each other, but the maximization procedure differs in the following
way:

• In the EM algorithm, we separately maximize the components of the lower bound, firstly finding the
next auxiliary distribution q and then maximizing the lower bound w.r.t. the parameters.

• In VAEs, we use an amortization network to model the auxiliary distribution q in a parameterized way.
Then we maximize the lower bound w.r.t. to both the variational and the generative parameters at once.

An obvious advantage of the EM algorithm is that we are guaranteed to always rise our lower bound and we
will never get worse. Also the EM algorithm requires less computation and has less parameters, depending on
the model choices.

11

4. Inference in Dynamical Systems

Our second contribution is a probabilistic perspective on “classical” Koopman theory as presented in various
publications [BBPK16, HHV20, KKB20, LKB18, WKR15]. In this chapter we will build the groundwork for
variational inference to combine them to the single Koopman Inference algorithm presented in chapter 5.

4.1. Hidden Markov Models and LGDS

Hidden Markov Models (HMMs) are simple Bayesian networks described by a non-observable (hidden) Markov
chain. This non-observable discrete chain can be indirectly observed with observations that are emitted by
every state. One of the key features of a Markov chain is that a state does only depend on the previous state,
but not states before that. That is, knowing only the previous state is sufficient and no more information can
be gathered by knowing every other state coming before. This is described by the state transition distribution

sk+1 ∼ p(sk+1 | sk)

being only dependent on the previous state sk. Analogous, a observation yk of a state sk is only dependent on
that specific state:

yk ∼ p(yk | sk)

These assumptions are called the Markov property and a system fulfilling this property is called Markovian.
These conditional distributions can be written in a graphical model as shown in Figure 4.1. Note that, in
general, no assumption has to be made on the “type” of state/observation (i.e. whether it is a scalar, a vector
or something completely different). Also, no assumption is made on the specific transition distributions, HMMs
can also be used to model deterministic transitions using a Dirac delta distribution.
A set of closely related dynamics models are LGDSs which are described by a noisy state transition

st+1 = Ast +wt, wt ∼ N (0,Q)

with covariance matrix Q. Similarly, the observations yt = Cst + vt underlie a Gaussian noise vt ∼ N (0,R)
too. Together they form the probabilistic model

st+1 = p(Ast,Q)

yt = p(Cst,R)

which fulfills the Markov property, hence the system is Markovian:

p(s1:T ,y1:T) = p(s1)
T∏︂
t=2

p(st | st−1)
T∏︂
t=1

p(yt | st)

12

s1 s2 s3 · · · sT

y1 y2 y3 yT

Figure 4.1.: Illustration of a Hidden Markov Model with states sk and emissions/observations yk.

s1 s2 s3 · · · sT

y1 y2 y3 yT

A A A A

C C C C

Figure 4.2.: Illustration of a Linear Gaussian Dynamical System with states xt and observations yt. Solid
arrows represent probabilistic dependency, where the matrix A is the dynamics matrix indicating
that the mean transitions linearly, as do the observations with the observation matrix C.

Note that we write st0:t1 for the sequence (︁st0 , st0+1, · · ·, st1
)︁ and analogous for the observation sequence

yt0:t1 . The probabilistic model of a LGDS is shown in Figure 4.2.
This system is similar to a HMM and in fact a LGDS really is an HMM, just with continuous states st ∈ Rk and
observations yt ∈ Rp.

4.2. Inference: Filtering and Smoothing

When looking at an LGDS, one of the first problems that one might consider is how to get the latent states
back? This procedure is called inference. In this section we will give an overview on how to perform inference
on an LGDS, meaning on a linear system that is Markovian.
For time-series data, the inference procedure is widely know as filtering and smoothing, where the following
distributions on the latent states st are calculated:

• Filtering: p(st |y1:t)

• Smoothing: p(st |y1:T)

That is, the filtered distribution only depends on the observations until that time, where in contrast the
smoothed distribution has used all data to the last time step T to estimate the latent states. An intermediate
step in the filtering algorithm is called prediction where the distribution p(st |y1:t−1) is being calculated, using
only the data to the previous time step. The differences between what data is used in the three steps is shown
in Figure 4.3.
We will now take a look on the most used filter, the well-known Kalman Filter and the Rauch-Tung-Striebel
Smoother, which is also sometimes called the Kalman Smoother as it requires a run of the Kalman filter first.

13

Smoothing

Filtering

Prediction

t− 1 t1 T

Figure 4.3.: This diagram shows the main differences between prediction, filtering and smoothing. The
shaded region describes the observations that have been used to estimate the state at time step t,
indicated by a solid line. The dotted line represents time step t− 1, to which all observations are
used in all three procedures.
Adopted from [Sol10].

4.2.1. Kalman Filter

The Kalman filter was originally introduced by R. Kalman in 1960 [Kal60] in the context of signal processing
to predict random signals, separate them from noise and detect signals of known form in the presence of
noise [Kal60]. For the normal Kalman filter we assume an underlying model of the form of an LGDS where
the observations are detected and the state has to be estimated from the data. The process of state estimation
is done in a two-step fashion:

1. Prediction: Estimate the distribution p(st |y1:t−1)

2. Correction: Estimate the distribution p(st |y1:t)

For a simple linear system with Gaussian noise, i.e. an LGDS, the equations for both the prediction and the
correction can be given in closed form and are fairly straightforward. For the prediction step, the equations
are given as

ŝt|t−1 = Aŝt−1|t−1 (4.1)
V̂t|t−1 = AV̂t−1|t−1A

T +Q (4.2)

where ŝt | t−1 and V̂t | t−1 are the mean and covariance of the prediction distribution p(st |y1:t−1), respectively.
The correction step, which integrates new knowledge gained from the observation yt into the estimate, is
given as

ŝt|t = ŝt|t−1 +Ktỹt (4.3)
V̂t|t = V̂t|t−1 −KtStK

T
t (4.4)

with the auxiliary variables

ỹt = yt −Cŝt|t−1 (4.5)
St = CV̂t|t−1C

T +R (4.6)
Kt = V̂t|t−1C

TS−1
t (4.7)

known as the innovation ỹ, residual covariance St and Kalman gain Kt. The resulting estimates ŝt|t and
V̂t|t then form the mean and covariance of the filtered distribution p(st |y1:t) respectively. These equations

14

form a recursive algorithm starting off with initial state estimates ŝ0|0 = m0 and V̂0|0 = V0 that have to be
determined in externally.
But these equations only work for linear systems. Lots of extensions of the regular Kalman filter have been
proposed to extend the filter to nonlinear systems. One of them is the Extended Kalman Filter (EKF) which
assumes locally linear dynamics and uses first-order Taylor expansions to linearize them. Throughout this
thesis we will use the cubature Kalman filter, which we will introduce later in subsection 4.3.2. We have
decided against using the EKF as it is slightly less accurate as the cubature Kalman filter and as we need
the Cholesky decompositions of the covariance matrices, which we can estimate directly using a square-root
cubature Kalman filter (see subsection 4.3.2).

4.2.2. Rauch-Tung-Striebel / Kalman Smoother

The Rauch-Tung-Striebel (RTS) was been introduced after the original Kalman filter by H. E. Rauch, F. Tung
and C. T. Striebel [RTS65] for optimal smoothing of linear systems with Gaussian noise, i.e. LGDS. With the
smoother, we want to estimate the smoothed distribution, also called the posterior

p(st |y1:T)

which uses all observations (see again Figure 4.3 for an illustration). By letting the Kalman filter “run”
beforehand, we get the filtered distribution p(st |y1:t). The smoothing equations are given as

ŝt|T = ŝt|t + Jt(ŝt+1|T − ŝt+1|t) (4.8)
V̂t|T = V̂t|t + Jt(V̂t+1|T − V̂t+1|t)J

T
t (4.9)

with the auxiliary variable Jt = V̂t|tA
T V̂

−1
t+1|t. The resulting estimates ŝt|T and V̂t|T then form the mean and

covariance of the smoothed/posterior distribution p(st |y1:T). These equations form a recursive algorithm
starting off with the final state and covariance estimates of the filter.
Hence, we need the Kalman filter before using the RTS smoother. Due to this hard wiring between the two
algorithms, the RTS smoother is also often referred to as the Kalman smoother.
Note that these equations only depend on the state dynamics matrix A, so a system that is linear in the state
and nonlinear in the observations can still use the standard RTS smoother and no further modification is
required.

4.3. Cubature Rules and Filtering

As we have already discussed, the plain Kalman filter not applicable to nonlinear systems without modifications.
In this section we want to motivate the need for cubature rules and outline their derivation and how to apply
them.
Often when deriving probabilistic algorithms like EM or the Kalman filter, we have to evaluate expectations
Ex∼p(x)

[︁
f(x)

]︁ and hence integrals of the form:

Ex∼p(x)

[︁
f(x)

]︁
=

∫︂
f(x)p(x) dx

15

In this thesis and lots of other literature, we have Gaussian distributions p(x) = N (x |µ,Σ) with mean µ and
covariance Σ, leading to Gaussian integrals of the form

Ex∼p(x)

[︁
f(x)

]︁
=

∫︂
f(x)N (x |µ,Σ) dx

which do not have closed form solutions for arbitrary, nonlinear, functions f(x). Two common approaches for
approximating the expectations/integrals are Monte Carlo Estimation, leading to Markov Chain Monte Carlo
(MCMC), particle filters, and numerical integration methods, known as cubature1 rules.
To approximate Gaussian integrals, we need a set of m sigma points xi to evaluate f(x) at and a set weights
wi to form a sum over the sigma points:∫︂

f(x)N (x |µ,Σ) dx ≈
m∑︂
i=1

wif(xi)

In this thesis we utilize the spherical-radial cubature rule [Sol10] which is a third-degree approximation for
Gaussian integrals. A third-degree approximation means that “this rule is exact for all monomials up to degree
three” [Sol10, p. 18]. In this cubature rule, the approximation is a finite sum over 2n points, where n is the
dimensionality of x, i.e. x ∈ Rn. With Σ1/2 being the Cholesky decomposition of Σ, so Σ = Σ1/2Σ1/2,T , the
approximation is given as ∫︂

f(x)N (x |µ,Σ) dx ≈ 1

2n

2n∑︂
i=1

f(Σ1/2ξi − µ)

with the cubature points ξi =
√
n[1]i. Here the points [1]i are “from the intersections between the Cartesian

axes and the n-dimensional unit hypersphere” [Sol10]. That is, the point [1]i is the i-th row vector of the
block matrix [︁I −I]︁, where I is the n-dimensional identity matrix. In the rest of this thesis we will write

SRC [f ;µ,Σ] :=

m∑︂
i=1

wif(xi)

for evaluations of the spherical-radial cubature rule as it is much shorter. Also, it highlights that the usage of
the cubature rule and not the formula on how to compute it.
Figure 4.4 shows the spherical-radial cubature rule working on a transition from polar coordinates to Cartesian
coordinates where the transformation is given by:

x = r cos θ y = r sin θ

The polar coordinate particles have been sampled from a multivariate Gaussian with diagonal covariance:

r ∼ N (80, 40) θ ∼ N (0, 0.4)

1 “Classical” numerical integration methods are called “quadrature” as they form a rectangle under the curve to approximate the
area, while in higher dimensions this is more or less a “cube” or “hypercube”, hence it is called “cubature”.

16

(a) The original samples in polar coordinates with the real
mean shown as an orange star in the middle.

(b) The approximate mean calculated via the spherical-
radial cubature rule is shown as an orange star, posi-
tioned at the mean of the transformed cubature points.
This plot also shows the Monte Carlo estimate as a black
cross right above the cubature estimate, showing that
the cubature estimate is really accurate with significantly
less computational effort.

Figure 4.4.: These plots show how the spherical-radial cubature rule is used to estimate the mean of the
Gaussian on the left after it has been transformed with a polar transformation to the right. To
illustrate the shape of the Gaussian after it has been transformed, we added the blue dots as
sample values of the Gaussian. These are 1000 sample points also used to calculate the Monte
Carlo estimate of the mean. The sigma points are shown as green pluses.
Adopted from [Sol10].

17

4.3.1. The Unscented Transform

The unscented transform, originally introduced by S. J. Julier and J. K. Uhlmann [JUD95] is another method
for approximating nonlinear Gaussian integrals with a parameterized transformation, the Unscented Transfor-
mation (UT). As shown by [Sol10], the spherical-radial cubature rule is just a special case of the more general
UT. We will follow Solins derivation of connection here. For UT, 2n+ 1 sigma points are formed as a matrix

X =
[︁
µ µ1T + γΣ1/2 µ1T − γΣ1/2

]︁ (4.10)

where γ :=
√
n+ λ and λ := α2(n+ κ)− n are scaling parameters defined using the parameters of the UT α

and κ. The approximation for the transformed mean and covariance is then given as

µ̂ := Ex∼N (µ,Σ)

[︁
f(x)

]︁
≈

2n+1∑︂
i=1

w
(m)
i−1 f(X i) (4.11)

Σ̂ := Covx∼N (µ,Σ)

[︁
f(x)

]︁
≈

2n+1∑︂
i=1

w
(c)
i−1

(︁
f(X i)− µ̂

)︁(︁
X i − µ̂

)︁T (4.12)

where X i is the i-th column of the sigma points matrix X . The weights w(m)
i for the mean and w

(c)
i for the

covariance are defined as

w
(m)
0 :=

λ

n+ λ
w

(c)
0 :=

λ

n+ λ
+ (1− α2 + β)

w
(m)
i :=

1

2(n+ λ)
w

(c)
i :=

1

2(n+ λ)

where β is another parameter of the UT. To get back the spherical radial cubature rule, where all weights
wi = 1/(2n) are the same for each sigma point and the sigma point X 0 has a weight of 0, i.e. the mean
is ignored, we have to set λ = 0. Hence, the spherical-radial cubature rule is a special case of the UT with
the parameters set as α = ±1, β = κ = 0. That means we can apply all theory developed for the UT to the
cubature rule by setting the parameters accordingly.

4.3.2. Cubature Kalman Filtering and Smoothing

Following [DO11, Sol10], we can use the spherical-radial cubature rule to extend the Kalman filter and RTS
smoother to nonlinear systems with Gaussian noise, i.e.

st+1 ∼ N
(︁
f(st),Q

)︁
yt ∼ N

(︁
g(st),R

)︁
In algorithm 4.1 we show the cubature Kalman filter, where the code line/equation correspondence to the
linear Kalman filter is shown in Table 4.1. Analogous, the cubature RTS smoother is shown in algorithm 4.2
and the correspondence table is shown in Table 4.2.

18

Algorithm 4.1: Spherical-Radial Cubature Kalman Filter
Data: Initial state m0 ∈ Rk, covariance V0 and observations y1:T ∈ Rp×T .

1 ŝ0|0 ←m0

2 V̂0|0 ← V0

3 for t = 1, 2, · · ·, T do
4 ξi ←

√
n[1]i

// Prediction:
5 xi,t−1|t−1 ← V̂

1/2
t−1|t−1ξi + ŝt−1|t−1

6 ŝt|t−1 ← 1
2n

∑︁2n
i=1 f(xi,t−1|t−1)

7 V̂t|t−1 ← 1
2n

∑︁2n
i=1 f(xi,t−1|t−1)f

T (xi,t−1|t−1)− ŝt|t−1ŝ
T
t|t−1 +Q

// Correction:
8 xi,t|t−1 ← V̂

1/2
t|t−1 + ŝt|t−1

9 ŷt|t−1 ← 1
2n

∑︁2n
i=1 g(xi,t|t−1)

10 St ← 1
2n

∑︁2n
i=1 g(xi,t|t−1)g

T (xi,t|t−1)− ŷt|t−1ŷ
T
t|t−1 +R

11 Jt ← 1
2n

∑︁2n
i=1 f(xi,t−1|t−1)g

T (xi,t|t−1)− ŝt|t−1ŷ
T
t|t−1

12 Kt ← JtS
−1
t

13 ŝt|t ← ŝt|t−1 +Kt(yt − ŷt|t−1)

14 V̂t|t ← V̂t|t−1 +KtStK
T
t

Name Code Line Linear Equation
Predicted State 6 (4.1)
Predicted Covariance 7 (4.2)
Filtered State 13 (4.3)
Filtered Covariance 14 (4.4)
Innovation 9 (4.5)
Residual Covariance 10 (4.6)
Kalman Gain 12 (4.7)

Table 4.1.: This table shows how the code lines of the cubature Kalman filer relate to the corresponding linear
Kalman filter equations.

Algorithm 4.2: Spherical-Radial Cubature Rauch-Tung-Striebel Smoother
Data: All values from the Kalman filter.

1 for t = T − 1, T − 2, · · ·, 1 do
2 ξi ←

√
n[1]i

3 xi ← V̂
1/2
t|t ξi + ŝt|t

4 Dt ← 1
2n

∑︁2n
i=1(xi − ŝt|t)

(︁
f(xi)− ŝt+1|t

)︁T
5 Jt ← DtV̂

−1
t+1|t

6 ŝt|T ← ŝt|t + Jt(ŝt+1|T − ŝt+1|t)

7 V̂t|T ← V̂t|t + Jt(V̂t+1|T − V̂t+1|t)C
T
t

19

Name Code Line Linear Equation
Smoothed State 6 (4.8)
Smoothed Covariance 7 (4.8)

Table 4.2.: This table shows how the code lines of the cubature RTS smoother relate to the corresponding
linear RTS smoother equations.

4.3.3. Square-Root Filtering / Smoothing

While cubature rules are extremely handy for approximating Gaussian integrals, they require the Cholesky
decomposition of the covariance Σ. The Cholesky decomposition might lead to numerical instabilities if the
matrix is ill-conditioned or even not positive definite, in which case no Cholesky decomposition exists. As we
will see in chapter 5, we need the Cholesky decomposition of every smoothed covariance V̂t|T , t = 1, 2, · · ·, T ,
leading to numerical instabilities if the cubature approximation in the filtering does not “create” valid covariance
matrices, i.e. positive definite and symmetric matrices. One approach for solving this problem is estimating
the Cholesky decomposition directly, without explicitly decomposing the matrix. Such filtering/smoothing is
known as square-root filtering/smoothing [VW01, Rut13].
We will mostly follow the derivation in [Rut13] and only outline the key results shortly. With the sigma points
X from the UT equation (4.10) and the corresponding weights, we can define the transformed sigma points

X ′
i = f(X i)

and utilize the UT mean µ̂ (4.11) and covariance Σ̂ (4.12) estimates. By applying another transformation to
the transformed sigma points,

Y i =

√︂
w

(c)
i (X ′ − µ̂)

which are the “scaled residuals” of the sigma points, we can choose an orthogonal matrix Θ such that

YΘ =
[︁
B Ok×(k+1)

]︁ (4.13)

Squaring both sides of this equation yields the covariance estimate

Σ̂ = YYT = YΘΘTY =
[︁
B Ok×(k+1)

]︁ [︃ BT

O(k+1)×n

]︃
= BBT

so B is the Cholesky decomposition of Σ̂. But the equation (4.13), where we neither now the orthogonal
matrix Θ nor the right side of the equation, is exactly the type of matrix decomposition known as the QR
decomposition that is numerically more stable than the Cholesky decomposition as it does not require any
special structure like positive definiteness of the matrix. By applying this argumentation in an analogous
way to every covariance computation in the cubature Kalman filter and RTS smoother, we find a complete
square-root filtering and smoothing algorithm propagating the Cholesky decomposition of the covariance
matrices V̂t|t−1, V̂t|t and V̂t|T .
The square-root cubature Kalman filter is summarized in algorithm 4.3 and the square-root cubature RTS
smoother is summarized in algorithm 4.4.
The square-root filtering now allows us to pass the Cholesky decomposition of the covariances directly through
the smoothing and filtering process, allowing higher numerical stability because we guarantee the covariances
to be positive definite even with approximations.

20

Algorithm 4.3: Square-Root Cubature Kalman Filter
Data: Initial state m0 ∈ Rk, covariance sqrt V1/2

0 and observations y1:T ∈ Rp×T .
1 ŝ0|0 ←m0

2 V̂
1/2
0|0 ← V

1/2
0

3 for t = 1, 2, · · ·, T do
4 Λ←

√
n · V̂1/2

t−1|t−1

5 X t−1|t−1 ←
[︁
ŝt−1|t−11

T +Λ ŝt−1|t−11
T −Λ

]︁
6 X s

t|t−1,i ← f(X t−1|t−1,i) + (−1)i ·Q, i = 1, 2, · · ·, 2k
7 X y

t|t−1,i ← g
(︁
X s

t|t−1,i

)︁
+ (−1)i ·R, i = 1, 2, · · ·, 2k

8 ŝt|t−1 ← 1
2k

∑︁2k
i=1X

s
t|t−1,i

9 ŷt|t−1 ← 1
2k

∑︁2k
i=1X

y
t|t−1,i

10 Ys
t|t−1,i ←

(︁
X s

t|t−1,i − ŝt|t−1

)︁
/
√
2k

11 Yy
t|t−1,i ←

(︁
X y

t|t−1,i − ŷt|t−1

)︁
/
√
2k

// Find S
1/2
t , Jt and V̂

1/2
t|t using the QR decomposition:

12

[︄
Yy

t|t−1

Ys
t|t−1

]︄
Θ =

[︄
S
1/2
t O O

Jt V̂
1/2
t|t O

]︄
13 Kt ← JtS

−1/2
t

14 ŝt|t ← ŝt|t−1 +Kt(yt − ŷt|t−1)

Algorithm 4.4: Square-Root Cubature Rauch-Tung-Striebel Smoother
Data: All values from the Kalman filter.

1 for t = T − 1, T − 2, · · ·, 1 do
2 Ys

t|t,i ← (X t|t,i − ŝt|t)

// Find Dt and Zt using the QR decomposition:

3

[︄
Ys

t+1|t
Ys

t|t

]︄
Θ =

[︄
V̂

1/2
t+1|t O O

Dt Zt O

]︄
4 Jt ← DtV̂

−1/2
t+1|t

5 ŝt|T ← ŝt|t + Jt(ŝt+1|T − ŝt+1|t)

// Find V̂
1/2
t|T using the QR decomposition:

6
[︂
Zt JtV̂

1/2
t+1|T

]︂
Θ =

[︂
V̂

1/2
t|T O

]︂

21

5. The Koopman Inference Algorithm

In this chapter we will introduce the theoretical background of our contribution, the Koopman inference
algorithm, that we will implement as a proof of concept in chapter 6. We will start by introducing the thoughts
that led to the idea of using variational autoencoder and EM for Koopman dynamical systems, then formulate
and solve the arising (approximate) inference problem.
By looking at the graphical model of an LGDS and the state transition model for a Koopman dynamical
system in Figure 5.1, we can see that there are lots of similarities. The first similarity is that both systems
assume a latent state that transitions linearly, either with a state dynamics matrix A for the LGDS or with the
Koopman operator1 K. The greatest difference is that measurements in classic LGDS are taken linearly with
an observation matrix C and nonlinear in the Koopman system with the measurement function h(·).
Our idea is to “flip” the Koopman dynamical system and replace the observation matrix C with a nonlinear
observation function g(·), that takes the linear states st and maps them into a nonlinear observation space yt.
In other words, we seek to find the inverse function of h(·) to map out of the linear embedding that Koopman
theory guarantees us to exist. Our assumption that such an inverse function exists is backed by previous
accomplishments in data-driven Koopman analysis [LKB18] which also seek and find such an inverse mapping
(see chapter 2 for more information).
Additionally, we contribute a probabilistic view on the Koopman operator, being able to gauge our uncertainty
about the embedding and the inverse mapping to the observation space.
At this point we want to clear up some inconsistencies in notation and naming that builds when working with
two systems where “observation” means opposing concepts. From now on, we will work on the graphical
system shown in Figure 5.2 characterized by the dynamics

st+1 = Ast +wt, wt ∼ N (0,Q)

yt = g(st) + vt, vt ∼ N (0,R)

that can equivalently be formulated as:

st+1 ∼ N (Ast,Q)

yt ∼ N
(︁
g(st),R

)︁
We call st the latent variables or latents in the latent space with dimensionality k, yt the observation variables
or observations in the observation space with dimensionality p, g : Rk → Rp the observation function mapping
latents to observations, A the (state) dynamics matrix, Q the state covariance matrix and R the observation
covariance matrix. Note that we also assume the Gaussian additive noise to be uncorrelated, i.e. we assume
diagonal covariance matrices Q and R.

1 From now on, we suppose a finite-dimensional matrix approximation K of the Koopman operator K.

22

s1 s2 s3 · · · sT

y1 y2 y3 yT

A A A A

C C C C

(a) Graphical model of a linear Gaussian dynamical system
with the latent state st and the (linear) observations
yt. In contrast to the Koopman system, this system is
not deterministic and the arrows represent probabilistic
dependency rather than hard transitions.

y1 y2 y3 · · · yT

x1 x2 x3 · · · xT

K K K K

F F F F

h h h hh−1 h−1 h−1 h−1

(b) State transition model of a Koopman dynamical system
with the Koopman operator K that can be approximated
with a matrixK. In contrast to the LGDS the state is rep-
resented via nonlinear transitions and the observations
are the linear dynamics.
Adopted from [BBPK16].

Figure 5.1.: Side-by-side comparison of the a LGDS on the left and a Koopman dynamical system on the right.
This side-by-side view highlights our idea of interpreting an Koopman system as a semi-linear
dynamical system (i.e. an LGDS with nonlinear observations).

s1 s2 s3 · · · sT

y1 y2 y3 yT

A A A A

g(·) g(·) g(·) g(·)

Figure 5.2.: The graphical model of the Koopman inference model. Given an observation sequence y1:T , we
seek the latent dynamics and the corresponding nonlinear mapping g(·) from the latent space to
the observations.

23

5.1. Formulating and Solving the Inference Problem using an EM Algorithm

We seek to find the matrices A, Q and R and the observation function gθ(·), parameterized by θ and the
initial state distribution s1 ∼ N (m0,V0) that maximize the likelihood

p(s1:T ,y1:T) = p(s1)

T∏︂
t=2

p(st | st−1)

T∏︂
t=1

p(yt | st)

which factors over the conditional distributions due to the Markovian assumption. Subsequently, we can
proceed by not maximizing the likelihood but the log-likelihood which is easier to maximize as the Gaussian
lies in the exponential family, exhibiting a convex optimization problem2:

log p(s1:T ,y1:T) = log p(s1) +
T∑︂
t=2

log p(st | st−1) +
T∑︂
t=1

log p(yt | st)

Inserting the Gaussian distributions

p(s1) = N (s1 |m0,V0) p(st | st−1) = N (st |Ast−1,Q) p(yt | st) = N
(︁
yt |gθ(st),R

)︁
yields the log-likelihood

log p(s1:T ,y1:T) = −
T (k + p)

2
log(2π)− 1

2
log|V0| −

T − 1

2
log|Q| − T

2
log|R|

− 1

2
(s1 −m0)

TV−1
0 (s1 −m0)

− 1

2

T∑︂
t=2

(st −Ast−1)
TQ−1(st −Ast−1)

− 1

2

T∑︂
t=1

(yt − gt)
TR−1(yt − gt)

with the abbreviation gt := gθ(st).
But maximizing this quantity is impossible as we do not have the latent states s1:T . Hence, as usual in EM
(see section 3.3), we instead maximize the expected log-likelihood and estimate the latent states based on out
previous guess for the state dynamics. These two steps form our E- and M-step of the Koopman inference
algorithm:

• E-Step: Estimate the latent states s1:T .
• M-Step: Maximize the expected log-likelihood w.r.t. the state dynamics and observation function

parameters.
We will proceed with deriving the M-step and finish this section off by deriving the E-step. Be aware that
we only briefly touch the derivation here and focus on the primary steps. See section A.1 for the complete
derivation with explanations throughout every step.

2 Strictly speaking, the optimization problem is only convex w.r.t. A and Q. For R and θ, the problem is still non-convex, but
numerically more stable as sums are easier to differentiate and to compute than products.

24

For the M-step, we first need the expected log-likelihood Q := Es1:T

[︁
p(s1:T ,y1:T)

]︁ as stated previously. This
quantity depends on three expectations that are estimated in the E-step:

ŝ
(n)
t|t0

:= E
[︂
s
(n)
t

⃓⃓⃓
y1:t0

]︂
ŝt|t0 :=

1

N

N∑︂
n=1

ŝ
(n)
t|t0 (5.1)

P
(n)
t|t0

:= E
[︂
s
(n)
t s

(n),T
t

⃓⃓⃓⃓
y1:t0

]︂
Pt|t0 :=

1

N

N∑︂
n=1

P
(n)
t|t0 (5.2)

P
(n)
t,t−1|t0

:= E
[︂
s
(n)
t s

(n),T
t−1

⃓⃓⃓⃓
y1:t0

]︂
Pt,t−1|t0 :=

1

N

N∑︂
n=1

P
(n)
t,t−1|t0 (5.3)

These expectations are called the expected state (5.1), the self-correlation (5.2) and the cross-correlation (5.3),
respectively. We also introduced an upper index, ·(n), which indicates which observation sequence our current
observation is from, because the algorithm can simultaneously learn on N observation sequences. For brevity,
we may write ŝt instead of ŝt|T (analogous for all other values). Additionally, we have to define two quantities
for the expectations of the nonlinear observation function gθ that we cannot evaluate in closed form:

ĝ
(n)
t := E

[︂
g
(n)
t

⃓⃓⃓
y1:T

]︂
(5.4)

G
(n)
t := E

[︂
g
(n)
t g

(n),T
t

⃓⃓⃓
y1:T

]︂
(5.5)

We can now evaluate the expected log-likelihood depending on the above quantities using the trace-trick3,
giving the following (enormous) quantity:

Q = Es1:T

[︁
p(s1:T ,y1:T)

]︁
= −NT (k + p)

2
ln(2π)− N

2
ln|V0| −

N(T − 1)

2
ln|Q| − NT

2
ln|R|

− N

2
tr
(︂
P1V

−1
0

)︂
+

N

2
tr
(︂
ŝ1m

T
0 V

−1
0

)︂
+

N

2
tr
(︂
m0ŝ

T
1 V

−1
0

)︂
− N

2
tr
(︂
m0m

T
0 V

−1
0

)︂
− N

2

T∑︂
t=2

tr
(︂
PtQ

−1
)︂
− tr

(︂
Pt,t−1A

TQ−1
)︂
− tr

(︂
APt,t−1Q

−1
)︂
− tr

(︂
APt−1A

TQ−1
)︂

− 1

2

N∑︂
n=1

T∑︂
t=1

tr
(︂
y
(n)
t y

(n),T
t R−1

)︂
− tr

(︂
y
(n)
t ĝ

(n),T
t R−1

)︂
− tr

(︂
ĝ
(n)
t y

(n),T
t R−1

)︂
+ tr

(︂
G

(n)
t R−1

)︂

3 The trace of a product of matrices/vectors is invariant under even permutations of the matrices/vectors within the trace.

25

By maximizing this quantity w.r.t. the dynamics matrix A, the covariance matrices Q and R, the initial state
mean m0 and the initial state covariance V0, i.e. setting the derivative w.r.t. these parameters to zero and
rearranging the equations, we get the closed-form solutions

Anew =

(︄
T∑︂
t=2

Pt,t−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−1

Qnew =
1

T − 1

(︄
T∑︂
t=2

Pt −Anew
T∑︂
t=2

Pt,t−1

)︄

mnew
0 = ŝ1 =

1

N

N∑︂
n=1

ŝ
(n)
1

Vnew
0 = P1 − ŝ1ŝ

T
1

Rnew =
1

NT

N∑︂
n=1

T∑︂
t=1

y
(n)
t y

(n),T
t − ĝ

(n)
t y

(n),T
t − y

(n)
t ĝ

(n),T
t +G

(n),T
t

where we assume an optimal gθ(·) in the last equation (to compute R). To maximize the expected log-
likelihood w.r.t. the observation function gθ, we choose a learnable function approximator, e.g. a neural
network and maximize Q using simple gradient descent or a more advanced variant like Adam [KB17]. We
should note that we do not need to fully maximize Q in every M-step but that it is enough to just get better in
every M-step for the convergence properties to still hold [DLR77].

We now look into the problem of evaluating ĝ
(n)
t and G

(n)
t . Instead of using Monte Carlo methods that are

both very computationally demanding (especially as the gradient has to flow through the evaluation), we
are employing the spherical-radial cubature rule that we have introduced in section 4.3. That way, we can
approximate the integrals both efficiently and deterministically (as compared to Monte Carlo methods):

ĝ
(n)
t =

∫︂
g
(n)
t p

(︂
s
(n)
t

⃓⃓⃓
y1:T

)︂
ds

(n)
1:T ≈ SRC

[︂
gθ; ŝ

(n)
t ,V

(n)
t

]︂
(5.6)

G
(n)
t =

∫︂
g
(n)
t g

(n),T
t p

(︂
s
(n)
t

⃓⃓⃓
y1:T

)︂
ds

(n)
1:T ≈ SRC

[︂
gθg

T
θ ; ŝ

(n)
t ,V

(n)
t

]︂
(5.7)

This concludes the derivation of the M-step, where we do not have explicit formulas for the observation
parameters θ as we do learn these using a numerical optimizer like Adam [KB17].
Deriving the E-step is quite straightforward given the groundwork we developed in section 4.2 and subsec-
tion 4.3.2. As we heavily employ cubature rules in the M-step (in fact, in every Gradient Descent (GD) iteration
in the M-step), we chose to use a square-root Kalman filter and a square-root RTS smoother (see subsec-
tion 4.3.3) to directly get the Cholesky decomposition of the used covariance matrices. We apply algorithm 4.3
after algorithm 4.4 with the state dynamics function f : Rk → Rk : s ↦→ As and the observations function gθ.
Additionally to the covariances, we have to compute the self- and cross-correlation. Following [Min99], they
are given by

P
(n)
t = V̂

(n)
t − ŝ

(n)
t ŝ

(n),T
t

P
(n)
t,t−1 = Ĵt−1V̂t − ŝ

(n)
t ŝ

(n),T
t−1

The whole Koopman inference algorithm is outlined in algorithm 5.1.

26

Algorithm 5.1: Koopman Inference
Data: N observation sequences y(n)

1:T ∈ Rp×T .
1 Initialize A, Q, R, m0, V0 and θ somehow (e.g. identity matrices).
2 while not converged do

// E-Step:
3 s

(1:N)
1:T , V̂1:T ← RTS-Smoother

4 P
(n)
t ← V̂

(n)
t − ŝ

(n)
t ŝ

(n),T
t for t = 1, 2, · · ·, T and n = 1, 2, · · ·, N

5 P
(n)
t,t−1 ← Ĵt−1V̂t − ŝ

(n)
t ŝ

(n),T
t−1 for t = 2, 3, · · ·, T and n = 1, 2, · · ·, N

// M-Step:
6 θ ← GD(︁Q(θ)

)︁
7 R← 1

NT

N∑︂
n=1

T∑︂
t=1

y
(n)
t y

(n),T
t − ĝ

(n)
t y

(n),T
t − y

(n)
t ĝ

(n),T
t +G

(n),T
t

8 A←

(︄
T∑︂
t=2

Pt,t−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−1

9 Q← 1

T − 1

(︄
T∑︂
t=2

Pt −Anew
T∑︂
t=2

Pt,t−1

)︄

10 m0 ←
1

N

N∑︂
n=1

ŝ
(n)
1

11 V0 ← P1 − ŝ1ŝ
T
1

27

5.2. Implementation

We implemented the Koopman inference algorithm in Python using the popular array processing library
NumPy [HMv+20] throughout the whole implementation, the deep learning library PyTorch [PGM+19] for the
numerical optimization of θ and Sacred [GKC+17] for experiment management. The whole implementation
can be found on GitHub4.
During the implementation we made sure on designing the algorithm as reusable as possible by separating all
data generation and investigation code from the actual implementation. Separating the data generation also
has the advantage that we can run benchmarks on the exact same data to compare model performance. We
separated the optimization of θ as much as possible (as outlined in algorithm 5.1) and made it possible for the
user of the algorithm to easily change the optimization algorithm to use in conjunction with the parameters of
the algorithm like the learning rate (defaulting to Adam [KB17] with a learning rate of 0.01). We also made
all of the following configurable:

• Whether to perform whitening of the observation data or not. That is, if we perform whitening, we
normalize and standardize the training observations beforehand using ŷ1:T,i = (y1:T,i − ȳi)/σyi where
ȳi is the mean and σyi is the standard deviation of the i-th component of all measurements. Doing the
whitening first sometimes improves the performance as we will see in chapter 6.

• The convergence precision, i.e. how much the log-likelihood has to change in order to continue the EM
iterations. We will see that, due to numerical instabilities and approximation errors in the cubature
rules, the algorithm rarely really converges before becoming numerically unstable.
That is why we also made the maximum number of iterations configurable to support early stopping.
Once the algorithm performed these number of EM iterations, it will abort and report the results.

• Similarly it is possible to configure the convergence precision and maximum number of iterations for the
subsequent optimization of θ.

These are only the parameters that can be configured directly on the EM algorithm but the user is also
able to specify how to initialize everything, i.e. the matrices A, Q, R, V0, m0 and the parameters θ of the
observation function gθ. We used a neural network with tanh activation function and a single hidden layer
for all experiments (see chapter 6 for more information about the experiment setup). We also made it possible
to pass arbitrary PyTorch modules as the function approximator that can be learned via a GD-like algorithm
(of course they must be differentiable and expose parameters).
For learning multiple observation sequences, as outlined in the derivation of the Koopman inference algorithm
in chapter 5, it turns out to be useful to add noise to the training data which has the effect of regularizing the
algorithm a bit.

5.2.1. Insights, Problems and Solutions

In this section we will focus on interesting insights and problems we found during the implementation and
how to possibly solve them.

4 See https://github.com/fdamken/bachelors-thesis_code on the tag submission.

28

https://github.com/fdamken/bachelors-thesis_code/tree/submission

Diagonal Covariance

As we assume the noise to be independent, we can safely omit the non-diagonal entries of the covariance Q,
R and V0. That way we further reduce the computational overhead that would otherwise be generated as we
still (even with square-root filtering) have to compute the Cholesky decomposition of Q and R. We can now
just take the square-root of the diagonal entries and get the Cholesky decomposition around ten times faster5.

Regularization and Learning Cholesky Decompositions

There are also a few points where our code is extensible to make it faster, improve numerical stability and so
on (see also section 7.3). The main points are regularization and/or learning the Cholesky decomposition
directly.
As we will see in chapter 6, having singular and non-positive definite matrices is a big problem that should be
assessed. We already implemented the square-root smoothing that increased the numerical stability through
the smoothing by not allowing non-positive definite matrices to be produced by the smoothing at all (as we
directly learn the Cholesky decomposition). Additional regularization might make sense at the computation
of the covariance matrices Q, R and V0. Another approach would be to learn the Cholesky decomposition of
the covariance matrices Q, R and V0 directly by replacing the explicit formulas with a GD algorithm that
directly learn the Cholesky or the square-root diagonal. As the optimization problem may still be convex or
close to convex, finding the global optimum should be easily possible.
We also address this in section 7.3 (Future Work).

5.2.2. Hyperparameters

One of the largest hyperparameter with high influence is obviously the architectural choice for gθ. As it turns
out, even simple models like a single hidden layer produce good results as we will see in chapter 6 and 7. A
tanh activation function turns out to be really suitable as it produces smooth results compared to e.g. a step
function or Rectified Linear Unit (ReLU). The other high-influence hyperparameter is the dimensionality k
of the latent space, i.e. how many dimensions the Koopman operator has to build up a linear system that,
taking the observations, behaves the same as the original nonlinear system. We will further investigate into
the dependence on this hyperparameter in section 6.1.3.
On the same page is the maximum number of iterations in the numerical optimization of θ. High maximum
iterations seem to lead to overfitting on the neural network, causing the whole algorithm to not generalize
well. On the other hand, too few iterations do not raise the likelihood enough to get reasonable results.

5 We ran a experiment on 1000 random 1000× 1000 matrices on NumPy’s [HMv+20] Cholesky decomposition and square-root
implementation. Decomposing all matrices took approx. 5.1 s, taking the square-root took approx. 0.5 s.

29

6. Experiments

In this chapter we will present all environments we experimented with as well as hyper-experiments, i.e.
experiments with the hyperparameters and their influence on the algorithm performance (in terms of the
prediction error and similar metrics, not the computing time).
We split this chapter into two parts: Firstly, we will present the experiment setup we used and the different
environments we tested on. Secondly, we present our results and put them in context of other results. All
critical discussion and comparison with related work will take place in chapter 7.

6.1. Setup

In this section we will introduce the experiment setup and all the different environments we used for evaluation.

6.1.1. Environments

This section covers the different environments we used and changes we have applied to them. Note that we
separated the data generation process from running the experiment. For each of the following experiments
we include the experiment ID at the beginning that can be used to locate the experiment in the code.

Proof-of-Concept: Classic LGDS

• Experiment ID: lgds

As a proof-of-concept and to empirically verify our proof on the exactness of the cubature rule and hence the
similar expected performance for plain linear systems, we benchmark our algorithm against a simple linear
system. The linear system has a two-dimensional state y :=

[︁
x1 x2

]︁T with the dynamics

ẋ1 = x2

ẋ2 = −x1

The initial state s1 is sampled from aGaussian distributionwithmean [︁0.1 0.2
]︁T and covariance diag (︁10−5, 10−5

)︁.
The system is integrated using the implicit Runge-Kutta Radau IIA [GH01] method with an evaluation interval
of h = 0.1 for T = 240 time steps where only the first Ttrain = 120 steps are used for training and the remaining
120 are used for validation.
As the system’s eigenvalues −i, i are purely imaginary, the integrated system rings around the equilibrium[︁
0 0

]︁T indefinitely.

30

(Damped) Pendulum

• Experiment ID: pendulum and pendulum_damped

The first nonlinear system we look at is the (inverted) pendulum in both an undamped and a damped setting.
For this experiment, we use the angular state y =

[︁
θ θ̇

]︁ where θ is the displacement angle (see Figure 3.2).
The dynamics are specified by the ODE

θ̈ = sin θ − dθ̇

that is solved using the Radau IIA [GH01] Initial Value Problem (IVP) integrator (after transforming the ODE
to a first-order ODE system). The initial velocity is set to 0 and the initial position is sampled from a Gaussian
distribution with mean π/36 and variance π/8. This puts the pendulum in motion as it falls down from its
initial position. For the undamped pendulum, we set d = 0. For both environments, we use an evaluation
interval of h = 0.1 for T = 1000 time steps where only the first Ttrain = 500 steps are used for training and
the remaining 500 are used for validation.

The damped pendulum is especially interesting as the system loses energy (i.e. the sum of the kinetic and
potential energy decreases over time) and the embedding has to encode this behavior.

Gym Pendulum

• Experiment ID: pendulum_gym

This is a sine/cosine version of the pendulum introduced before, but without damping. We use the environment
of OpenAI Gym [BCP+16] for generating the data used for training. The motion equations are still the same
as for the non-Gym pendulum

θ̈ = sin θ

with d = 0 as the Gym pendulum does not include damping, but the state is defined as the sine and cosine of
the angle:

y :=

⎡⎣cos θsin θ

θ̇

⎤⎦
The Gym environment uses the Euler method for integrating the ODE with a step size of h = 0.05. We generate
T = 100 time steps of which Ttrain = 50 are used for training and the other 50 for validation.

Gym Cartpole

• Experiment ID: cartpole_gym

The second to last environment we run experiment on is the cartpole environment. In the cartpole environment,
an inverted pendulum is build on a (typically controlled, but otherwise freely movable) cart. If the pendulum
falls down, the torque on the joint is translated into a force moving the cart around. This creates nonlinear
coupling and therefore, highly nonlinear dynamics. A sketch of the cartpole environment is given in Figure 6.1.
As for the previous pendulum, we rely on the cartpole implementation of Gym. We slightly modified the

31

g

x

L

θ

Figure 6.1.: Illustration of the cartpole environment. The cart has mass mc, the pole mp with length L. The
cart can move freely on the x axis, while the pendulum can swing freely around the center of the
cart, causing the cart to move.

environment to be uncontrolled, as the environment usually has discrete actions for pushing the cart left or
right. The state of the environment is given as

y :=

⎡⎢⎢⎣
x
ẋ
θ

θ̇

⎤⎥⎥⎦
where x is the cart position, ẋ is the cart velocity, θ is the pole angle and θ̇ is the angular velocity. The
implemented equations of movement, taken from [Flo05], are given as:

θ̈ =
g sin θ + cos θ

(︂
−F−mpℓθ̇

2
sin θ

mc+mp

)︂
ℓ
(︂
4
3 −

mp cos2 θ
mc+mp

)︂
ẍ =

F +mpℓ
(︁
θ̇
2
sin θ − θ̈ cos θ

)︁
mc +mp

Here g = 9.8m s−2 is the gravitational acceleration, mp = 0.1 kg and mc = 1kg are the masses of the pole
and cart, respectively, 2ℓ = 1m is the pole length and [F] = N is the external (control) force acting on the cart
that we set to 0N. The Gym environment uses an implicit Euler method for integrating the ODE with a step
size of h = 0.02. We generate T = 300 time steps of which we use Ttrain = 150 for training and the remaining
150 steps for validation.

Gym Double Pendulum

• Experiment ID: acrobot_gym

The last environment we test on is the double pendulum, implemented in Gym as the acrobot (as for the
cartpole, we removed all control inputs and modified the initial state to start on top rather than hanging
straight down). The double pendulum consists of a pendulum on a fixed joint and a second pendulum attached
to the end of the first pendulum. This creates highly nonlinear coupling and is the most common example of a

32

m1

ℓ1

ϕ1g

m2

ℓ2ϕ2

Figure 6.2.: Illustration of the double pendulum environment. The pendulums have lengths ℓ1 and ℓ2 with the
masses m1 and m2 attached to the respective ends. The inner pendulum can swing freely around
the center while the other pendulum can swing freely around the end of the inner pendulum.
Hence, fixing one of the pendulums would transform the system back to a simple pendulum. If
both pendulums can swing, the system is chaotic.

chaotic system [SGWY92]. We observe the state vector

y :=

⎡⎢⎢⎢⎢⎢⎢⎣

cosϕ1

sinϕ1

cosϕ2

sinϕ2

ϕ̇1

ϕ̇2

⎤⎥⎥⎥⎥⎥⎥⎦
where ϕ1 and ϕ2 are the displacement of the first and second joint, respectively. See Figure 6.2 for a sketch of
the double pendulum. The governing equations of motion are given as:

ϕ̈1 =
g(sinϕ2 cosϕ∆ − µ sinϕ1)− (ℓ2ϕ̇

2
2 + ℓ1ϕ̇

2
1 cosϕ∆) sinϕ∆

ℓ1(µ− cos2 ϕ∆)

ϕ̈2 =
gµ(sinϕ2 cosϕ∆ − µ sinϕ1) + (µℓ1ϕ̇

2
1 + ℓ2ϕ̇

2
2 cosϕ∆) sinϕ∆

ℓ2(µ− cos2 ϕ∆)

with ϕ∆ := ϕ1 − ϕ, µ := 1 + m1/m2 where g = 9.8m s−2 is the gravitational acceleration, m1 = 1kg and
m2 = 1kg are the masses of the two links and ℓ1 = 1m and ℓ2 = 1m are the lengths of the two links. The
Gym environment uses a 4-th Order Runge-Kutta Method (RK4) for integrating the ODE with an evaluation
interval of h = 0.2. We modified the initial position to be drawn from a Gaussian distribution with mean π
and standard deviation π/8 and the initial velocity to be drawn from a uniform distribution in the interval
[−0.1, 0.1]. We generate T = 75 time steps of which we use Ttrain = 56 (75%) for training and the remaining
19 for validation.

6.1.2. Experiment Setup

We now introduce the experiment setup and initialization we used for each environment. For all experiments,
we initialized the latent state dynamics matrixA with an identity matrix, the initial statem0 with a one-vector

33

and all covariance matrices R, Q and V0 with a small diagonal covariance of 10−5. We set the maximum
number of g-optimization iterations to 1000 for all environments. As described in section 5.2, we used a
neural network for the observation function with tanh activation functions (except for the output layer of
course) and a single hidden layer with 50 neurons. We used 100 maximum iterations for the pendulum, 200
for the damped pendulum, 500 for the Gym pendulum, 500 for the Gym cartpole and 250 for the Gym double
pendulum.
For the proof-of-concept environment (the linear system), we used a slightly different setup as the environment
is a lot simpler. We used a zero-layer neural network with no activation function, i.e. a learnable matrix/linear
transformation. We also fixed the latent dimensionality to be 2 for the linear system as we only have two
states.

6.1.3. Hyper-Experiments

Besides the performance on specific environments, we were interested in how hyperparameters like the latent
dimensionality affect the performance of the system. In this section we will discuss and present our experiment
setup for the “hyper-experiments”. All hyperparameters that are not part of the experiment where set as in
in subsection 6.1.2.
If not stated differently, we always ran the experiment with five different seeds to average out initialization
noise.

Influence of the Latent Dimensionality

As the latent dimensionality directly influences how well the Koopman matrix can approximate the infinite-
dimensional operator, it is one of the most interesting hyperparameters we evaluate. Hence, we evaluate
multiple different latent dimensionalities from k = 1 to k = 50.

6.2. Results

In this section we will look at the results of the experiments described above. We organized the section into
the different environments and will take a look at both the hyper-experiments first and then the individual
results for optimized hyperparameters.
For evaluating the performance of the model, we use different measures and metrics, both qualitative and
quantitative. For a qualitative evaluation, we simply plot the produced data. These plots can get quite noisy
as we will see, but they comprise all things we need for a qualitative assessment:

• The ground truth, generated as described above with the adequate numerical integration of the equations
of motion.

• The smoothed states as they are produced from the E-step of the Koopman Inference algorithm, i.e. ŝ1:T .
• The rollout, starting both from the learned initial value as well as from the last smoothed state. While

the former visualizes the ability of the model to work completely “on its own”, the latter shows how
well the linear dynamics generalize beyond the training data.

34

• And of course the confidence (i.e. the learned variance) around each trajectory.
For quantitative comparison, we focus on the Normalized Root Mean Squared Error (NRMSE) across all
dimensions and time steps, computed as

NRMSE =
1

k

k∑︂
i=1

1

ymax − ymin

⌜⃓⃓⎷ 1

T

T∑︂
t=1

(yt,i − ỹt,i)
2

where yt,i is the true data and ỹt,i is the corresponding data to evaluate at the t-th time step of the i-th dimension.
We can compute four different error values: The error over the rollout from start to finish (t = 1, 2, · · ·, T),
over the training data only (t = 1, 2, · · ·, Ttrain), over the prediction only (t = Ttrain, Ttrain + 1, · · ·, T) or over
the smoothed trajectory (i.e. the results from the E-step, ŝ1:T). The latter primarily checks that our algorithm
performs correct and that it is even capable of learning the dynamics and it should be near zero or at least
below one for a decent parameter choice and model performance. On the other hand, the NRMSE over the
complete rollout describes the generalization abilities. In conjunction with the rollout error over the training
and prediction set, we can see which rollout primarily caused the complete error. We expected a low error on
the training set for every environment.
Using the NRMSE instead of the plain Root Mean Squared Error (RMSE) allows us to compare model
performance across the difference dimensions as we are scaling the error to a reasonable interval. For error
values below 0.01, we say that the error is close to zero as it only deviates at most 1% from the true data. For
< 0.1 we say it is a good fit, and for < 0.2 we say the approximation is decent. However, we have to take these
numbers with care as they summarize a lot of data into a single scalar.
All subsections (of non-proof-of-concept environments) are separated into two main parts: Looking at the
hyper-experiment of the latent dimensionality and inspect how well the model performs with different latent
dimensionalities. Then we will pick two or three of those latent dimensionalities and look at the qualitative
plots of the runs (exemplary evaluation).
Each exemplary evaluation also contains the ID of the run containing the data we used and the raw data of
the runs is added to the GitHub repository along with the code.

6.2.1. Proof-of-Concept: LGDS

For the LGDS environment, we did not run multiple latent dimensionalities as we already know how many
states we have. Figure 6.3 shows the rollout plot for k = 3 latent dimensions. As expected, both the rollout
and the smoothed states perfectly match the true data, even in the prediction time span.

6.2.2. Pendulum

Influence of the Latent Dimensionality

For the pendulum experiment, we tested 50 latent dimensionalities from k = 1 to k = 50.
We start by having a first look at the NRMSE of the smoothed trajectory in Figure 6.4 to see how many latent
dimensions we need at least to get a model that is even slightly capable of learning the pendulum dynamics.
We see that the NRMSE shrinks to near zero (less than 0.01). Even for k = 1, the error is only approximately
0.18.

35

https://github.com/fdamken/bachelors-thesis_code/tree/submission

Figure 6.3.: The rollout plot in the observation space of the LGDS environment for k = 3. The left plot shows
the first dimension, the right plot the second dimension. The black dots represent the true data
of which the model used everything till the red prediction boundary to train on. The blue line
is the rollout, starting from the learned initial value (marked with a green star). The orange
dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting from
the last smoothed state, forming the “smoothed prediction”. The orange lines are directly behind
the blue ones, hence they are not visible. The shaded regions show the confidence, i.e. two times
the standard deviation.

Figure 6.4.: The NRMSE of the smoothed trajectory on the training data of the pendulum environment.

36

Looking at the NRMSE of the complete rollout in Figure 6.5a, we see that the error is quite noisy due to initial-
ization. Nevertheless, the error shrinks until k ≥ 10 and then stabilizes around an error of approximately 0.15.
Comparing the complete rollout error with the training and prediction NRMSE in Figure 6.5b and Figure 6.5c,
respectively, we see that the training error falls until k ≥ 10 and then stabilizes around 0.08. For the prediction
error, we see a similar connection to k ≥ 10, but the error does not shrink as much and always is around 0.20.

Exemplary Evaluation: 2-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 2 (run 100). Looking at the errors,
the rollout trajectory should be off the real data, but the smoothed trajectory should nearly match the true
data. Figure B.5 shows that the rollout and also the rollout of the smoothed trajectory are far off with low
confidence, but the true data is in the confidence region. However, the smoothed trajectory follows the true
data really good.

Exemplary Evaluation: 10-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 10 (run 10) as we postulated from the
NRMSE data that this is the boundary, after which we expected diminishing returns. Figure 6.6 shows the
rollout of the model, where the dynamics of the system are captured quite well with high confidence. Also the
prediction is good, so that the differences between true data, smoothed prediction and rollout are small.

Figure 6.6.: The rollout plot in the observation space of the pendulum environment for k = 10. The left plot
shows the displacement and the right plot the angular velocity. The black dots represent the
true data of which the model used everything till the red prediction boundary to train on. The
blue line is the rollout, starting from the learned initial value (marked with a green star). The
orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting
from the last smoothed state, forming the “smoothed prediction”. The shaded regions show the
confidence, i.e. two times the standard deviation.

37

(a) Error of the complete rollout on the pendulum environment.

(b) Error of the rollout on the training data only on the
pendulum environment.

(c) Error of the rollout on the prediction only on the pendu-
lum environment.

Figure 6.5.: Plot of the errors of the pendulum environment for different latent dimensions. The black
dots show the measured data, the blue line the average of the data points for a specific latent
dimensionality. The blue shaded region shows two times the standard deviation.

38

Figure 6.7.: The NRMSE of the smoothed trajectory on the training data of the damped pendulum environ-
ment.

Exemplary Evaluation: 14-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 14 (run 210) for which we got the
smallest overall NRMSE. Figure B.6 shows the rollout of the model. In comparison to the 10-dimensional
latent, nothing has changed, fulfilling the expectation of diminishing returns with high latent dimensionality.

6.2.3. Damped Pendulum

Influence of the Latent Dimensionality

For the damped pendulum experiment, we tested 50 latent dimensionalities from k = 1 to k = 50.

We start by having a first look at the NRMSE of the smoothed trajectory in Figure 6.7 to see how many latent
dimensions we need at least to get a model that is even slightly capable of learning the damped pendulum
dynamics. We see that the NRMSE shrinks to near zero (less than 0.01) for latent dimensionalities of k ≥ 2.
Even for k = 1, the error is only approximately 0.09.

Looking at the NRMSE of the complete rollout in Figure 6.8a, we see that there is a point of diminishing
returns in terms of the latent dimensionality for k ≥ 10, where we get decent errors (around 0.05) for all
latent dimensionalities. Looking at the parts the complete NRMSE is composed of, the training and prediction
error in Figure 6.8b and Figure 6.8c, respectively, we see that the latent dimensionality affects both parts, the
training and prediction error. However, the prediction error is generally smaller, which is mostly caused by the
value of the state and hence the rollout being smaller.

39

(a) Error of the complete rollout on the damped pendulum environment.

(b) Error of the rollout on the training data only on the
damped pendulum environment.

(c) Error of the rollout on the prediction only on the damped
pendulum environment.

Figure 6.8.: Plot of the errors of the damped pendulum environment for different latent dimensions. The
black dots show the measured data, the blue line the average of the data points at a specific
latent dimensionality. The blue shaded region shows two times the standard deviation.

40

Figure 6.9.: The rollout plot in the observation space of the damped pendulum environment for k = 10. The
left plot shows the displacement and the right plot the angular velocity. The black dots represent
the true data of which the model used everything till the red prediction boundary to train on.
The blue line is the rollout, starting from the learned initial value (marked with a green star).
The orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout
starting from the last smoothed state, forming the “smoothed prediction”. The shaded regions
show the confidence, i.e. two times the standard deviation.

Exemplary Evaluation: 2-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 2 (run 2). According to the errors, the
rollout error should be quite high, but the smoothed trajectory should follow the true data really good. Fig-
ure B.7 shows that most trajectories are far off the true trajectory with low confidence, while the smoothed
trajectory almost perfectly matches the true data.

Exemplary Evaluation: 10-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 10 (run 110). We chose this latent
dimensionality as it is the boundary of diminishing returns in terms of the NRMSE. Figure 6.9 shows the
rollout of the model. In comparison to the four-dimensional latent, the behavior of the system is captured
pretty good, with a decent confidence. Also, the prediction is at nearly the same amplitude as the real data.
But the rollout gets phase-shifted in comparison to the true data further in the rollout horizon.

Exemplary Evaluation: 24-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 30 (run 130) for which we got the smallest
overall NRMSE. Figure B.8 shows the rollout of the model. In comparison to the ten-dimensional latent, the
model is less confident but the rollout is nearly the same as the rollout of the ten-dimensional latent.

41

Figure 6.10.: The NRMSE of the smoothed trajectory on the training data of the Gym pendulum environment.

6.2.4. Gym Pendulum

Influence of the Latent Dimensionality

For the Gym pendulum experiment, we tested 50 latent dimensionalities from k = 1 to k = 50. The difference
of the Gym pendulum in comparison to the pendulum from before is that we do not measure the angle directly
but use the sine/cosine of the angle, directly encoding the symmetry of a swing-around into the features. This
environment is extremely numerically brittle, thus we have less data points for higher latent dimensionalities
(to the right of the plots).
We start by having a first look at the NRMSE of the smoothed trajectory in Figure 6.10 to see how many latent
dimensions we need at least to get a model that is even slightly capable of learning dynamics. We see that the
NRMSE shrinks to near zero (less than 0.01) for latent dimensionalities of k ≥ 2. Even for k = 1, the error is
only approximately 0.09.
Looking at the NRMSE of the complete rollout in Figure 6.11a, we see a slight improvement at the beginning,
which is, looking at the training and prediction error in Figure 6.11b and Figure 6.11c, respectively, fully
caused by the training error. Looking at the prediction error, we see that the error does not change much with
different latent dimensionalities1. In comparison, the training error shrinks to near zero (less than 0.01) for
latent dimensionalities k ≥ 7. Hence, we expect the model not to predict well behind the prediction boundary.

1 The spike on the right is possibly due to bad initialization and is only chosen as the mean as all other seeds crashed due to
negative definite matrices.

42

(a) Error of the complete rollout on the Gym pendulum environment.

(b) Error of the rollout on the training data only on the Gym
pendulum environment.

(c) Error of the rollout on the prediction only on the Gym
pendulum environment.

Figure 6.11.: Plot of the errors of the Gym pendulum environment for different latent dimensions. The black
dots show the measured data, the blue line the average of the data points at a specific latent
dimensionality. The blue shaded region shows two times the standard deviation.

43

Figure 6.12.: The rollout plot in the observation space of the Gym pendulum environment for k = 4. The left
plot shows the displacement and the right plot the angular velocity. The black dots represent
the true data of which the model used everything till the red prediction boundary to train on.
The blue line is the rollout, starting from the learned initial value (marked with a green star).
The orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout
starting from the last smoothed state, forming the “smoothed prediction”. The shaded regions
show the confidence, i.e. two times the standard deviation.

Exemplary Evaluation: 2-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 2 (run 2). According to the errors,
the rollout trajectory should be off the true data, but the smoothed trajectory should be mostly on the true
data. Figure B.9 shows exactly this behavior: all trajectories are far sway from the true trajectory with the
exception of the smoothed trajectory that almost matches the true data.

Exemplary Evaluation: 4-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 4 (run 104). This run is especially
interesting for comparison with [MWK19] which we will do in chapter 7. Figure 6.12 shows the rollout of the
model with four latent dimensions. We see that the smoothed trajectory equals the true data as expected and
so does the training rollout. However, on the prediction the rollout only roughly follows the true data, not
capturing the dynamics of the system well.

44

Figure 6.13.: The NRMSE of the smoothed trajectory on the training data of the cartpole environment.

Exemplary Evaluation: 7-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 7 (run 157) as we postulated from the
NRMSE data that this is the boundary of diminishing returns. Figure B.10 shows the rollout of the model. We
see that the training rollout and the smoothed trajectory fits the true data well, as expected, but the prediction
does not capture the dynamics of the system.

6.2.5. Gym Cartpole

Influence of the Latent Dimensionality

For the cartpole experiment, we tested 50 latent dimensionalities from k = 1 to k = 50.

We start by having a first look at the NRMSE of the smoothed trajectory in Figure 6.13 to see how many latent
dimensions we need at least to get a model that is even slightly capable of learning the cartpole dynamics. We
see that the NRMSE shrinks to near zero (approximately 0.001) for latent dimensionalities of k ≥ 2. Hence,
we need at least 2 latent dimensions to learn the dynamics.

Looking at the NRMSE of the complete rollout in Figure 6.14a, we see that the error does not shrink much
any more for latent dimensionalities of k ≥ 10, where the error stabilizes around 0.23. Looking at the training
and prediction plots in Figure 6.14b and Figure 6.14c, respectively, we see that the training error falls by a
large margin until k ≥ 10 latent dimensions where the error stabilized near zero, while the prediction error
does not fall much after the first few latent dimensionalities. Hence, we can predict that our model learns the
training rollout well, but does not generalize beyond the prediction boundary.

45

(a) Error of the complete rollout from on the cartpole environment.

(b) Error of the rollout on the training data only on the
cartpole environment.

(c) Error of the rollout on the prediction only on the cartpole
environment.

Figure 6.14.: Plot of the errors of the cartpole environment for different latent dimensions. The black dots
show the measured data, the blue line the average of the data points at a specific latent
dimensionality. The blue shaded region shows two times the standard deviation. The data
points on the right side of the plot get increasingly sparse as the algorithm gets increasingly
numerically brittle for higher latent dimensionalities.

46

Exemplary Evaluation: 2-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 2 (run 2). As we have already seen,
the rollout should not perform too god, but the smoothed trajectory should be really accurate. Looking
at Figure B.11, we see that nearly all trajectories are off the true trajectory. Only the smoothed trajectory fits
the data perfectly (until the prediction boundary). We can also see that the rollout starts to go near the true
data, learning roughly how the true data looks.

Exemplary Evaluation: 10-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 10 (run 10). According to the NRMSE of
the training data, this should perform decently on the training data and, according to the NRMSE, bad on the
prediction. Figure 6.15 shows that the rollout and the smoothed trajectory actually follow the true data, while
the rollout does not match the true data after the prediction boundary, but roughly forecasts the qualitative
behavior. Interestingly, the confidence in the rollout of the pendulum displacement and velocity is a lot higher
than the confidence in the rollout of the cart position and velocity.

Exemplary Evaluation: 16-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 16 (run 166), the run which had the
lowest NRMSE over the complete rollout data. Still, according to the NRMSE of the prediction, we do not
expect a good prediction. Figure B.14 confirms this, as the rollout on the training data follows the true data
closely while the prediction is off the true trajectory. Compared to the 14-dimensional latent, we do not see
much improvement in the prediction.

6.2.6. Gym Double Pendulum

Influence of the Latent Dimensionality

For the double pendulum experiment, we tested 50 latent dimensionalities from k = 1 to k = 50.

We start by having a first look at the NRMSE of the smoothed trajectory in Figure 6.16 to see how many latent
dimensions we need at least to get a model that is even slightly capable of learning the double pendulum
dynamics. We see that the NRMSE shrinks below 0.05 for latent dimensionalities of k ≥ 3, so we need at least
3 latent dimensions to get a decent model.

Looking at the NRMSE of the complete rollout in Figure 6.17a, we see that the error shrinks until k ≥ 6
latent dimensions and than stabilizes to an error around 0.27. Looking at the training and prediction error
in Figure 6.17b and Figure 6.17c, we see that mostly only the training error shrinks while the prediction
errors seems to be random noise. For the training error, however, we see that the error shrinks until k ≥ 18
and then stabilized around 0.17. Hence, we can assume that our model does not generalize well (we will
assess this in chapter 7). On the other hand, our rollout on the training data should be a good fit.

47

Figure 6.15.: The rollout plot in the observation space of the cartpole environment for k = 10. The top plot
is the cart position (left) and velocity (right), the row the pole displacement (left) and angular
velocity (right). The black dots represent the true data of which the model used everything until
the red prediction boundary to train on. The blue line is the rollout, starting from the learned
initial value (marked with a green star). The orange dash-dotted line is the smoothed data.
The dotted orange line then is the rollout starting from the last smoothed state, forming the
“smoothed prediction”. The shaded regions show the confidence, i.e. two times the standard
deviation. As the variances in the top plots are very high, see Figure B.13 in section B.3 for the
plot without the confidence.

48

Figure 6.16.: The NRMSE of the smoothed trajectory on the training data of the double pendulum environ-
ment.

Exemplary Evaluation: 3-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 3 (run 153). As we have already seen, the
rollout should not perform well, but the smoothed trajectory should be really accurate. Looking at Figure B.16,
we see that nearly all trajectories do not match the true trajectory. Only the smoothed trajectory follows the
data decently (until the prediction boundary, of course).

Exemplary Evaluation: 18-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 18 (run 168). We chose this latent
dimensionality as it is at the boundary before the training error does not get much batter in terms of the
NRMSE. Figure 6.18 shows the rollout of the model. We see that the rollout on the training trajectory nearly
perfectly follows the true data, while the prediction is quite off the true trajectory, not even capturing some of
the motion. This is especially bad as the model is quite confident about the state.

Exemplary Evaluation: 30-Dimensional Latent

We now look at an exemplary run for the latent dimensionality k = 30 (run 80) for which we got the smallest
overall NRMSE. Figure B.17 shows the rollout of the model. In comparison to the 18-dimensional latent, the
rollout is not nearly as good. However, the low confidence in the prediction produces is better than for the
18-dimensional latent as more parts of the true trajectory lie within the region of confidence.

49

(a) Error of the complete rollout from on the double pendulum environment.

(b) Error of the rollout on the training data only on the
double pendulum environment.

(c) Error of the rollout on the prediction only on the double
pendulum environment.

Figure 6.17.: Plot of the errors of the double pendulum environment for different latent dimensions. The
black dots show the measured data, the blue line the average of the data points at a specific
latent dimensionality. The blue shaded region shows two times the standard deviation. The
data points on the right side of the plot get increasingly sparse as the algorithm gets increasingly
numerically brittle for higher latent dimensionalities.

50

Figure 6.18.: The rollout plot in the observation space of the double pendulum environment for k = 18. The
top row shows the cosine/sine of the displacement of the inner pendulum, the middle row
shows the cosine/sine of the displacement of the outer pendulum and the bottom row shows
the angular velocity of the inner and outer pendulum. The black dots represent the true data
of which the model used everything till the red prediction boundary to train on. The blue line
is the rollout, starting from the learned initial value (marked with a green star). The orange
dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting from
the last smoothed state, forming the “smoothed prediction”. The shaded regions show the
confidence, i.e. two times the standard deviation.

51

7. Discussion

In this chapter we will analyze the results from chapter 6 and set them into context with results from related
work. We will discuss the performance on the different environments first and then compare our results with
the results of some related work.

7.1. Model Performance

7.1.1. Proof-of-Concept: LGDS

As we have seen in Figure 6.3, the LGDS proof-of-concept environment works pretty well and the prediction
perfectly matches the true data. The model has an NRMSE of approximately 0.0001 for every metric. This
shows that we are still able to learn linear dynamical systems. We expected this result as we have proven that
our algorithm is equivalent to the LGDS inference algorithm for linear systems in section A.2. Hence, our
algorithm does not reduce the “power” of the linear algorithm on linear systems and only extends its usability
to nonlinear systems.

7.1.2. Pendulum

The pendulum is the first nonlinear environment we assess.
As we have seen in the experiment for different latent dimensionalities, we need at least ten latent dimensions
to model the pendulum with a decent prediction error, where we expected some downsides on the prediction
and expected a really good rollout in the training area. As we have seen in the results for a ten-dimensional
latent in section 6.2.2, we see a good rollout in the training area and also a good prediction for the pendulum
position, but a slightly smaller amplitude in the velocity plot. This corresponds to an energy loss of the
pendulum that should not happen as it is undamped. Figure 7.1 highlights this by showing the total, kinetic
and potential energy of the system, where the rollout energy changes with time which should not happen.
However, the potential energy almost matches the true potential energy, supporting our inspection that the
angular displacement is well fit. The kinetic energy generated by the velocity is, on the other hand, a bit off.
We can further inspect this behavior by looking at the rollout in the latent space in Figure 7.2. We see that the
energy loss is primarily happening in the tenth dimension. Looking at the real parts of the eigenvalues of the
latent state dynamics matrix,

σ = {1.00, 1.00, 1.00, 0.96, 0.65, 0.67, 0.86, 0.80, 0.73, 0.75}

we see that not all are close to one, i.e. they vanish after some time. This directly corresponds to the energy loss
in the system (the eigenvalues of a system capture the time evolution). We also see that the tenth dimension

52

Figure 7.1.: Total energy of the undamped pendulum composed of the kinetic energy on the bottom left and
the potential energy on the bottom right. The blue line represents the true energy, calculated
from the training and validation data. The orange line is the energy calculated from the rollout.
As usual, the red line is the prediction boundary up until all training data was used; afterwards,
the model predicted the rest of the data.

has a really high variance in its states, indicating that the model already has enough latent dimensions to
explain the dynamics. Looking at the rollout of a nine-dimensional latent (run 58) in Figure 7.3, however, we
see that the energy loss is still there. It does not make sense to inspect higher-dimensional latent spaces as we
have seen in the latent dimensionalities experiment that the error does not shrink much. Additionally, the
14-dimensional latent that we inspected in section 6.2.2 also loses energy. We do not expect this to get better
with higher latent dimensionalities. Also, higher dimensionalities impose numerical instability, a phenomenon
we will address in subsection 7.1.9.

For this environment, we get really small confidences with the true trajectory still being in the region of
confidence. We also see that the variance is higher on the turns of the pendulum which makes sense as that is
the most critical part of the movement.

While these first results cast a shadow on our model performance, the energy loss builds hope for the damped
pendulum to work out well.

53

Figure 7.2.: Rollout of the latent dimensions of the pendulum environment for k = 10 latents.

Figure 7.3.: The rollout plot in the observation space of the pendulum environment for k = 9. The left plot
shows the displacement and the right plot the angular velocity. The black dots represent the
true data of which the model used everything till the red prediction boundary to train on. The
blue line is the rollout, starting from the learned initial value (marked with a green star). The
orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting
from the last smoothed state, forming the “smoothed prediction”. The shaded regions show the
confidence, i.e. two times the standard deviation.

54

7.1.3. Damped Pendulum

As for the undamped pendulum, we have seen in the experiment with different latent dimensionalities that
we need at least ten latent dimensions. For ten dimensions, we get a decent NRMSE on both training and
prediction. We have seen this behavior in section 6.2.3 and in the rollout plot in Figure 6.9. In contrast to the
undamped pendulum, the amplitudes of the oscillations are now on the correct heights, so we definitely learn
the energy loss of the system. We can also see this behavior in the plot of the total, kinetic and potential energy
in Figure 7.4. We see in the total and the kinetic and potential energy that the damped pendulum model is
really close to the real energy levels, in all energy types. This supports the first interpretation of the rollout
that we really learn the energy loss. On the other hand, the rollout is phase-shifted to the real trajectory,
sometimes even predicting the pendulum to be on the opposite side of a swing. Looking at the rollout in the
latent space in Figure 7.5, we see a similar behavior in the latent space, so our learned observation function
seems to be correct, but the latent dynamics are a bit off.

Improving this might be possible by fixing the observation function and optimizing just the state dynamics
matrix on its own. This reduces the parameters the algorithm has to learn by a lot, possibly yielding a more
accurate rollout. But overall we are satisfied with this result as we learn the energy loss and get a confidence
that is not too high such that the real position is still in the region of variance. As for the undamped pendulum,
we get higher variances in regions where the pendulum turns over.

As the rollout is generated from a linear system in the background, it makes sense that energy-loosing systems
can are easier to model: Taming a linear system to keep its energy for a long time is a lot harder than “letting
it converge to zero”. A stable non-zero system corresponds to eigenvalues that are approximately one (as
limk→∞ 1k = 1 and limk→∞ xk = 0 for |x| < 1, but limk→∞ xk → ∞ for x > 0). Small disturbances to a
system with eigenvalues close can cause the system to diverge quickly.

7.1.4. Gym Pendulum

As we have seen in the experiment with different latent dimensionalities in section 6.2.4, we need at least
seven latent dimensions to get a decent NRMSE on the training rollout. However, we noticed that we get
better results in one run for four latent dimensions (see section 6.2.4) which we looked at for a comparison
with [MWK19]. This shows that our algorithm is extremely sensitive to the initialization as the neural network
is initialized randomly. Looking at the rollout of the seven-dimensional latent run in section 6.2.4, we see
that the latent “stops to change” after the prediction boundary in comparison to the four-dimensional latent
where the rollout still moves (and roughly captures the dynamics). By taking a look at the rollout in the latent
space in Figure 7.6 and Figure 7.7 for the four- and seven-dimensional run, we see completely different time
behaviors.

As we have already outlined in subsection 7.1.3, it is hard for a linear system to be stable when not converging
to zero. We see such a behavior in the latent rollout: While the latents of the four-dimensional run all rise
exponentially after the prediction horizon, causing movement in the observation space, approximately half
of the latents in the seven-dimensional exponentially increase while the other half decreases exponentially.
This seems to lead to vanishing within the neural network, explaining the non-movement in the observation
space. This behavior might be improved by regularizing the latent dynamics to a system with eigenvalues
really close to one, leading to more stable dynamics. Another idea would be to make the latent dynamics
time-dependent so compensate for the exploding states by adding an extra latent state just representing the
time step. However, this would impose other difficulties and would make the system non-autonomous.

55

Figure 7.4.: Total energy of the damped pendulum composed of the kinetic energy on the bottom left and
the potential energy on the bottom right. The blue line represents the true energy, calculated
from the training and validation data. The orange line is the energy calculated from the rollout.
As usual, the red line is the prediction boundary up until all training data was used; afterwards,
the model predicted the rest of the data.

56

Figure 7.5.: Rollout of the latent dimensions of the damped pendulum environment for k = 10 latents.

Another interesting result of the Gym pendulum experiment is that it performs a lot worse than the simple
angular pendulum in subsection 7.1.2. This might be caused by the sine/cosine terms as these add more
nonlinearity to the system (with small angle approximations it is possible to model the pendulum for small
displacements, this is not possible using the sine/cosine of the angle). But as taking the sine/cosine of the
angle is actually a nonlinear feature transformation typically used to implicitly encode the symmetries in a
polar coordinate environment like the pendulum (swinging the pendulum around one time does not increase
the angle by 2π, instead the pendulum works like a congruence class generalized to R), we could use the
inverse feature transformation to recover the angle from the sine/cosine data and get a similar performance
as for the angular pendulum.

7.1.5. Gym Cartpole

As we have seen in the experiments with different latent dimensionalities in section 6.2.5, we need at least
ten latent dimensions to get a decent NRMSE on the (training) rollout. We have also seen that more latent
dimensions (e.g. 16 dimensions in section 6.2.5) do not yield better results than ten latent dimensions
(see section 6.2.5). However, in both cases we get a near-to-perfect rollout before the prediction boundary
but fail at the prediction. For the ten dimensional latent, the model captures the dynamics of the pole
displacement/velocity and also the cart velocity after the prediction boundary roughly, but for the cart position
the trajectory is quite off. Another interesting result is that the model is a lot more confident in the pole
displacement and velocity than the cart position. This makes sense as the movement of the car is more complex
as it accelerates nonlinearly only through the movement of the pendulum. This does not impose a linear
movement on the cart, but rather it is centered around zero with a light shifting occurring when the pendulum

57

Figure 7.6.: Rollout of the latent dimensions of the Gym pendulum environment for k = 6 latents.

Figure 7.7.: Rollout of the latent dimensions of the Gym pendulum environment for k = 7 latents.

58

falls down or swings up1. Also, as we have seen in subsection 7.1.2 and subsection 7.1.3, we are able to learn
the movement of an undamped and a damped pendulum, where the motion of the pole on a cart can be seen
as a slightly damped pendulum as the system is transferring energy from the pendulum to the cart.

7.1.6. Gym Double Pendulum

As we have seen in the experiment with different latent dimensionalities, we need at least 18 latent dimensions
to model the double pendulum adequately in the training rollout. As expected from the NRMSE, we get
a decent fit on the rollout for 18 latent dimensions (see Figure 6.18), but the prediction is far off the true
trajectory. The prediction does not even capture the dynamics roughly and also it is pretty certain on its wrong
trajectory. This matches our expectations as the double pendulum is a chaotic environment with nonlinear
coupling that is really hard to learn.
Improving the performance on the double pendulum might be possible by using a shorter integration interval
h to provide the algorithm more information between the states such that it can better extrapolate from the
data. Another idea, similar to the one outlined in subsection 7.1.4, would be to apply an inverse feature
transform on the sine/cosine of the angles to reduce the dimensionality of the observation space and let “the
model discover the symmetries”. We will discuss this again in Future Work. But overall we are satisfied that
we managed to learn at least the rollout on the training data even in a chaotic system.

7.1.7. Running on the CPU or GPU Makes a Difference

We noticed that running our code on the Central Processing Unit (CPU) or on the Graphics Processing
Unit (GPU) makes a huge difference in the quality of the results, where running on the GPU is better. The
environment we noticed the greatest difference is the double pendulum, of which we added two plots
in section B.1. Figure B.1 shows the double pendulum experiment result running on the CPU and Figure B.2
shows the double pendulum experiment result running on the GPU. We expect both plots to be the same,
but in fact the plot of the experiment running on the CPU looks better. These runs are the runs 1564 and
1565, respectively. In both cases we set the seed for both NumPy and PyTorch to the same value. As the data
was generated beforehand, the Gym seed does not matter in this case. We expect this to be an issue with a
gradient flowing too far through the computation graph or an issue with floating point operations working
differently on the CPU/GPU.

7.1.8. Learning Multiple Sequences at Once

We derived the Koopman inference algorithm in a way such that it should be possible to learn on multiple
observation sequences at once (see section 5.1). However, we noticed that the results of learning from multiple
sequences at once yields worse results than learning one observation sequence. We have multiple explanations
for this issue, the most probable being an error in the implementation we did not find. Another explanation is
that in the single-sequence case the neural network of the observation function overfits to the training data
and does not have enough “memory” to also overfit to another observation sequence and therefore breaks.
This is a serious problem to address and we might be able to overcome this problem by adding noise to the
input to improve generalization.

1 See GitHub (Link) for a GIF of the cartpole movement.

59

https://raw.githubusercontent.com/fdamken/bachelors-thesis/b5a4acbc1d10fa0224a73201995222690d2fb6de/thesis/figures/cartpole.gif
https://raw.githubusercontent.com/fdamken/bachelors-thesis/b5a4acbc1d10fa0224a73201995222690d2fb6de/thesis/figures/cartpole.gif

Figure B.3 and Figure B.4 show two rollouts on the damped pendulum environment, the former only learning
on a single observation sequence and the latter learning on multiple sequences at once. We see that while the
result of a single sequence captures the dynamics decently (see subsection 7.1.3 for an in-depth discussion),
the model that learned on two sequences does not capture the dynamics correctly.

7.1.9. Discussion on Numerical Stability

The primary thing we noticed in terms of numerical stability is the definiteness of the covariance matrices Q,
R and V0. While this can be fixed by learning the Cholesky decomposition directly, better regularization or
putting priors on the matrices (see section 7.3 for more information on these topics), we also faced singular
matrices. This primarily happened for high latent dimensionalities, a phenomenon that can also be seen in the
latent dimensionalities comparison plots in section 6.2. This is caused by the algorithm “not knowing what
to do” with a latent dimension, i.e. when it already has “enough” dimensions to explain the data. We could
use this behavior to automatically detect which latents are important and which are not, called automatic
relevance determination (see subsection 7.3.3) for more proposals on this topic.
With implementing the square-root filtering/smoothing in the E-step we gained a lot of numerical stability
(also speed) by not having to compute the Cholesky decomposition of every smoothed covariance.
With all that combined, we are satisfied with the numerical stability of the Koopman inference algorithm,
especially given that one of the great instabilities, singular matrices, lead to future work on automatic relevance
determination.

7.2. Comparison with Related Work

In this section we will discuss the performance of the Koopman inference algorithm in the context of the
results from related work, the Deep Variational Koopman (DVK) model proposed in [MWK19]. We used
the code Morton et al. originally published along with their paper and modified it to work with the latest
TensorFlow [AAB+16] and applied the changes mentioned in [MWK19] (i.e. made the actions of the acrobot
and cartpole environment continuous). Additionally, we removed the actuation abilities of the environments
along with the control inputs to mimic the behavior of our work which currently does not work with control
inputs. Our modified version can be found on GitHub2.
We ran four different environments:

• The acrobot environment that is the same as our double pendulum environment presented in sec-
tion 6.1.1.

• Two cartpole environments, one equal to our cartpole environment presented in section 6.1.1 and
one with sine and cosine of the pole angle displacement as it was done initially in the DVK reference
implementation.

• The pendulum environment that that is the same as our Gym pendulum environment presented in sec-
tion 6.1.1 with sine/cosine features.

2 See https://github.com/fdamken/variational-koopman on the branch without-control.

60

https://github.com/fdamken/variational-koopman/tree/without-control

If possible, we used the same amount of time steps during training for both our and the other model. However,
due to numerical instabilities in their implementation, we had to deviate in terms of the number of time steps
for some environments3:

• We could only use 32 steps on the cartpole as opposed to our model which used 150.
• We used 64 steps on the double pendulum as opposed to our model which used only 56.

Also, our algorithm currently only learns on one observation sequence, i.e. if we learn on a sequence that
covers Ttrain time steps, we only use Ttrain data points, while the DVK model uses 3968 equally sized sequences.
This sums up to 253,952 data points for the acrobot environment, 126,976 for the cartpole environment and
198,400 for the pendulum environment.
We assess the performance of both models by looking at the rollout plots and evaluating the performance
qualitatively, and by comparing the Normalized Root Mean Squared Error. We compute the NRMSE along the
whole trajectory, although we would like to point out that the “rollout” of DVK is not a complete rollout as the
observations on the training data are reconstructions of the learning data. That is, the rollout starts from the
prediction boundary, possibly yielding better results before the boundary as if the data would be computed
from the beginning. But this most probably does not affect our assessment in meaningful ways.
We will now discuss the qualitative performance on each environment separately and afterwards assess the
quantitative results for all environments at once.

7.2.1. Pendulum

The rollout on the pendulum environment of the DVK model is shown in Figure 7.8. We compare these
results with both our results for the Gym pendulum (with sine/cosine) features and our results on the angular
pendulum. As discussed in subsection 7.1.4, we can assume an inverse feature transformation back to the
polar coordinate space.
We see that the reconstruction before the prediction boundary works quite well, however, the sine feature of
the angle has a dent around t ≈ 25. In comparison to our rollout in Figure 6.12 (on the Gym pendulum), our
rollout in the training error before the prediction boundary matches the data better. However, the prediction
of the DVK model captures the behavior of the system better than our prediction. Looking at the angular
pendulum in Figure 6.6 (on ten latent dimensions), our model captures both the dynamics before and after
the prediction boundary better than the DVK model.

3 The exact parameters we ran their code with can be found in the GitHub repository.

61

https://github.com/fdamken/variational-koopman/tree/without-control

Figure 7.8.: Rollout of the pendulum environment of the DVK model, generated by us. The top row shows
the sine/cosine of the displacement of the pendulum, the bottom plot shows the angular velocity.
The black dots show the ground truth of the trajectory, the solid blue line the reconstructed states
from the latents, the dashed blue line the prediction of the model and the shaded region shows
the min-to-max distance. This is generated by sampling multiple sequences from the model and
taking the maximal and minimal values at each time step. This can be roughly interpreted as the
model confidence. The blue line is the mean of the sampled predictions. As usual, the red line is
the prediction boundary, until which the blue line represents the reconstruction; afterwards, the
model predicted the rest of the data.

62

7.2.2. Cartpole

For the cartpole environment, we now have two versions of the environment for the DVK model: One that
uses the angle of the pole displacement directly with the rollout in Figure 7.9 and one that uses sine/cosine
features of the angle in Figure 7.10.
We see that both the reconstruction and the prediction for both cases diverge greatly from the true data.
Interestingly, in case of the sine/cosine features, the prediction diverges more from the true data compared
to the angular features, even though the former was a modification originally done in the DVK model. But
we have to point out that we were not able to fully reproduce the original results, so the original version
might have yielded better results. Compared to our result in Figure 6.15 (on ten latent dimensions), our
model captures the dynamics more accurately in the training section, but worse after the boundary (i.e. for
prediction), especially in the cart position and velocity. Overall, we can say from this qualitative comparisons,
that our model performs better on the cartpole4.

7.2.3. Double Pendulum

The final environment we benchmarked on the DVK model is the double pendulum, for which both we and the
DVK model used cosine/sine feature transformations. The rollout of the DVK model is shown in Figure 7.11.
We see that the reconstruction and prediction of the angular velocity is quite accurate as well as the re-
construction and prediction of the sine of both angles. However, the cosine only matches some of the data
points. Compared to our rollout in Figure 6.18 (on 18 latent dimensions), the reconstruction is worse but the
prediction is a lot more accurate than ours on every dimension.

7.2.4. Quantitative Comparison and Summary

We now look at a quantitative comparison of both models, the DVK model and the Koopman inference
algorithm (ours). We use the NRMSE on the complete rollout, the rollout on the training data (or, in case
of DVK, the reconstruction) and the prediction. We summarized the different errors in Table 7.1, where our
algorithm is almost consistently better at environments that use the angle directly instead of the cosine/sine.
Also, we are almost always better in terms of the training rollout, while we perform worse in the prediction.
However, these numbers should be taken with care as the NRMSE is not scale-independent (even though it
is better than the RMSE due to the normalization), but as the errors reflect our results from the qualitative
comparison, we are confident that our algorithm performs better.
Overall the performance of out algorithm matched our expectations compared to the DVK Koopman model
for multiple reasons: Firstly, we gauge the uncertainty directly instead of sampling multiple trajectories and
treating the min-max distance as uncertainty. Secondly, our algorithm is much more sample-efficient (see
the numbers at the beginning of this section). Thirdly, as already mentioned in related work, our method
has a lot simpler model in terms of number of parameters and size of neural networks. Nevertheless, the
DVK has multiple of advantages over our method: It generalizes to more environments than our approach, is
numerically more stable in some senses (e.g. it does not have covariance matrices that can become negative
definite or singular in some cases) and it already has the ability to learn the inputs of an actuated system, as
shown in [MWK19].

4 Note that we used more time steps for training our model, but overall less data points. Also we were not able to train the DVK
model on more time steps as it became numerically unstable.

63

Figure 7.9.: Rollout of the cartpole environment of the DVK model with angular features, generated by us.
The top row shows the position/velocity of the cart, the bottom row shows the angle and angular
velocity of the pole one the cart. The black dots show the ground truth of the trajectory, the solid
blue line the reconstructed states from the latents, the dashed blue line the prediction of the
model and the shaded region shows the min-to-max distance. This is generated by sampling
multiple sequences from the model and taking the maximal and minimal values at each time
step. It can be roughly interpreted as the model confidence. The blue line is the mean of the
sampled predictions. As usual, the red line is the prediction boundary, until which the blue line
represents the reconstruction; afterwards, the model predicted the rest of the data.

64

Figure 7.10.: Rollout of the cartpole environment of the DVK model with angular features, generated by us.
The top row shows the position/velocity of the cart, the middle row shows the cosine/sine of
displacement and the bottom row shows the angular velocity of the pole on the cart. The black
dots show the ground truth of the trajectory, the solid blue line the reconstructed states from
the latents, the dashed blue line the prediction of the model and the shaded region shows the
min-to-max distance. This is generated by sampling multiple sequences from the model and
taking the maximal and minimal values at each time step. It can be roughly interpreted as the
model confidence. The blue line is the mean of the sampled predictions. As usual, the red line
is the prediction boundary, until which the blue line represents the reconstruction; afterwards,
the model predicted the rest of the data.

65

Figure 7.11.: Rollout of the double pendulum environment of the DVK model, generated by us. The top
row shows the cosine/sine of the displacement of the inner pendulum, the middle row shows
the cosine/sine of the displacement of the outer pendulum and the bottom row shows the
angular velocities of the inner and outer pendulum, from left to right. The black dots show
the ground truth of the trajectory, the solid blue line the reconstructed states from the latents,
the dashed blue line the prediction of the model and the shaded region shows the min-to-max
distance. This is generated by sampling multiple sequences from the model and taking the
maximal and minimal values at each time step. It can be roughly interpreted as the model
confidence. The blue line is the mean of the sampled predictions. As usual, the red line is the
prediction boundary, until which the blue line represents the reconstruction; afterwards, the
model predicted the rest of the data.

66

Environment Error on. . . Deep Variational Koopman Koopman Inference
Sine/Cosine Pendulum Complete 0.198 0.023

vs. Training 0.168 0.014
Angular Pendulum Prediction 0.222 0.029

Sine/Cosine Pendulum Complete 0.198 0.200
vs. Training 0.168 0.003

Sine/Cosine Pendulum Prediction 0.222 0.282
Angular Cartpole Complete 0.265 0.200

vs. Training 0.466 0.009
Angular Cartpole Prediction 0.420 0.377

Sine/Cosine Cartpole Complete 0.470 0.200
vs. Training 17.222 0.009

Angular Cartpole Prediction 0.817 0.377
Complete 0.102 0.228

Double Pendulum Training 0.103 0.002
Prediction 0.104 0.562

Table 7.1.: Comparison of the errors of all environments we benchmarked DVK and Koopman inference on.
The environment in the first column describes which environment the data of the DVK is collected
from (before “vs.”) and from which environment the data of the Koopman inference algorithm is
collected from (after “vs.”). The complete error is over the rollout/reconstruction over the whole
sequence, the training error is over the rollout/reconstruction on the training data and prediction
is over rollout on the validation data. The numbers represent the NRMSE. The respective lowest
error is marked in bold font.

67

7.3. Future Work

We will now discuss and propose future work and ideas that can be tried based on the results of this thesis.

7.3.1. Control

In this thesis we presented a method for learning a dynamical system with no control inputs. The most
obvious extension would be to add control inputs to the latent space in an additive fashion st+1 = Ast +But

with a learnable control matrix B. With this approach it might be possible to actually perform MPC and
uncertainty-aware control like in [MWK19], but with a simpler model. Our first approach to this would be to
test this method on a simple environment like the pendulum and first learn the control rollout and afterwards
perform a stabilization task and try the swing-up of the pendulum.

7.3.2. Bayesian Treatment

Another extension would be to employ a Bayesian view on the parameters and treat e.g. the state dynamics
matrix, covariance matrices and so on as random variables. This would allow to gauge the uncertainty on
the dynamics itself and would allow to restrict the matrices to small ones by placing a prior on them. The
approach would be to remove the Maximum Likelihood (ML) estimator and marginalize over the parameters
to get a predictive distribution. Another semi-Bayesian approach would be to use point-estimates using a
Maximum A-Posteriori (MAP) estimator rather than a predictive distribution.

7.3.3. Automatic Relevance Determination (ARD)

In combination with going full Bayesian on the model goes the implementation of automatic relevance
determination of latent dimensions as proposed in [BG00] for linear systems. Choosing a zero-mean prior
might lead to a determination of non-relevant latent states, driving the state dynamics matrix to zero.
Implementing this could solve the problems described in subsection 7.1.9 that the algorithm does already
have “enough” latent dimensions and drives the variance to a high level on some dimensions.

7.3.4. Better Regularization and Learning the Cholesky Decomposition

As already outlined in section 5.2.1, it might be beneficial for numerical stability to directly learn the Cholesky
decomposition of the covariance matrices by using numerical optimization instead of closed-form optimization.
Another approach could be to impose better regularization on the matrices if they become negative (semi-)
definite. However, while giving this a short first try during our implementation, we found out that just adding
some values to the diagonal does not lead to better model performance but rather drives the likelihood to
negative infinity.

68

7.3.5. Speed Improvements by Full PyTorch or Enhanced QR Decomposition

As the square-root smoothing heavily uses QR decompositions which are faster on the CPU but the M-step
uses backpropagation which is faster on the GPU, we had to copy the data over in every EM iteration. It might
be beneficial to implement a more advanced QR decomposition (e.g. [ABDK11]) and run the whole algorithm
in the GPU.

7.3.6. (Inverse) Feature Transformations

As we have seen in 7.1.2 and subsection 7.1.4, using the angle directly instead of the sine/cosine improves
prediction capabilities a lot. It might be beneficial to try out the proposed inverse feature transformation to get
the angular displacement back from the sine and cosine and to apply this technique to other environments as
well (e.g. the double pendulum).

69

8. Conclusion

Linearization is very important in control to handle nonlinear systems that exhibit complicated dynamics.
We have looked at Koopman theory, a technique to find globally linear embedding for a nonlinear system.
Unfortunately, the Koopman operator, the core of Koopman theory, is generally infinite-dimensional. Prior
work [BBPK16, KKB20, LKB18] has shown that we can find a finite-dimensional representation of the operator.
These representations seek Koopman eigenfunctions that span an invariant subspace of the embedding, and
do not transform under the influence of the Koopman operator other than being scaled. Nevertheless, most of
the existing approaches work on deterministic models, seeking the Koopman eigenfunctions. While methods
have been proposed which take a probabilistic perspective on the Koopman operator, they use complicated
model setups with multiple neural networks and do not directly gauge the uncertainty of model predictions.
In this thesis we present a combination of existing theory for Linear Gaussian Dynamical Systems with
cubature rules to approximate arising nonlinear Gaussian integrals in a deterministic way to build up an
Expectation-Maximization algorithm. We called the resulting algorithm the Koopman inference algorithm. It
alternates between estimating the states in the E-step and optimizing the linear latent state dynamics and a
nonlinear observation function that maps the linear latent states back to the nonlinear dynamics in the M-step.
This way, we are able to predict the nonlinear dynamics and learned the Koopman observation functions
without hand-tuned loss functions like in [LKB18].
We evaluated the model performance on multiple different environments: A simple pendulum, a damped
pendulum, the cartpole environment and a double pendulum. We also proved, and showed empirically, that our
algorithm extends the common algorithm for learning LGDS by showing that the used integral approximations
are exact for linear functions and by validating the result on a regular LGDS. We discovered out that systems
that lose energy (e.g. the damped pendulum) are generally easier to learn than systems that conserve energy
(e.g. the undamped pendulum), as the latent dynamics have to be stable but should not approach zero to
keep moving. Additionally, we discovered that the pendulum with sine/cosine features is a lot harder to learn,
presumably because of the additional nonlinearity added by the feature transformation. Also, the algorithm
was able to provide a rough approximation for the dynamics of the double pendulum environment, even
though this is a chaotic system and it was not able to predict further movements beyond the training data.
Finally, we compared our Koopman inference algorithm against the Deep Variational Koopman model proposed
by [MWK19]. We saw that our algorithm performs similar, however, the DVK model is better at predicting the
dynamics beyond the training data, while our model is primarily able to predict until the end of the training
data. We should note that the DVK performs reconstruction from the latents that were learned during the
training while our model performs the rollout from the beginning.
Overall we are satisfied with the performance of the Koopman inference algorithm. It allows further improve-
ments to learning the influence of control inputs on actuated systems or employing a Bayesian view on the
latent dimensions and further gauge the uncertainty on the state dynamics.

70

Bibliography

[AAB+16] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. arXiv:1603.04467 [cs], March 2016.

[ABDK11] Michael Anderson, Grey Ballard, James Demmel, and Kurt Keutzer. Communication-Avoiding QR
Decomposition for GPUs. In 2011 IEEE International Parallel Distributed Processing Symposium,
pages 48–58, May 2011.

[BBPK16] Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Koopman Invariant
Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. PLOS
ONE, 11(2):e0150171, February 2016.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540 [cs], June 2016.

[Bea03] Matthew J. Beal. Variational Algorithms for Approximate Bayesian Inference. Doctoral, UCL
(University College London), 2003.

[BG00] Matthew J. Beal and Zoubin Ghahramani. The Variational Kalman Smoother. Technical report,
Gatsby Computational Neuroscience Unit, May 2000.

[Bir27] George David Birkhoff. Dynamical Systems. American Mathematical Soc., December 1927.
[BPG+19] Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, James Taylor, and Gerhard Neumann.

Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces.
arXiv:1905.07357 [cs, stat], May 2019.

[CSS55] By R. Ceppellini, M. Siniscalco, and C. a. B. Smith. The Estimation of Gene Frequencies in a
Random-Mating Population. Annals of Human Genetics, 20(2):97–115, 1955.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data Via
the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22,
1977.

[DO11] Marc Peter Deisenroth and Henrik Ohlsson. A Probabilistic Perspective on Gaussian Filtering and
Smoothing. arXiv:1006.2165 [cs, math, stat], June 2011.

[Flo05] Răzvan V. Florian. Correct Equations for the Dynamics of the Cart-Pole. 2005.

71

[GH96] Zoubin Ghahramani and Geoffrey E. Hinton. Parameter estimation for linear dynamical systems.
Technical Report CRG-TR-96-2, University of Toronto, Februrary 22, 1996.

[GH01] Nicola Guglielmi and Ernst Hairer. Implementing Radau IIA Methods for Stiff Delay Differential
Equations. Computing, 67(1):1–12, July 2001.

[GKC+17] Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jürgen Schmidhuber. The Sacred
Infrastructure for Computational Research. Proceedings of the 16th Python in Science Conference,
pages 49–56, 2017.

[HHV20] Yiqiang Han, Wenjian Hao, and Umesh Vaidya. Deep Learning of Koopman Representation for
Control. arXiv:2010.07546 [cs, eess], October 2020.

[HMv+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.

[Jen06] J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta
Mathematica, 30:175–193, 1906.

[JUD95] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. A new approach for filtering nonlinear
systems. In Proceedings of 1995 American Control Conference - ACC’95, volume 3, pages 1628–1632
vol.3, June 1995.

[Kal60] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering, 82(1):35–45, March 1960.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs], January 2017.

[KKB20] Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery of Koopman eigen-
functions for control. arXiv:1707.01146 [math], May 2020.

[Koo31] B. O. Koopman. Hamiltonian Systems and Transformation in Hilbert Space. Proceedings of the
National Academy of Sciences of the United States of America, 17(5):315–318, May 1931.

[KW14] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs,
stat], May 2014.

[LKB18] Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear
embeddings of nonlinear dynamics. Nature Communications, 9(1):4950, December 2018.

[Min99] Thomas P. Minka. From Hidden Markov Models to Linear Dynamical Systems. Technical Report
TR-531, July 1999.

[MWK19] Jeremy Morton, Freddie D. Witherden, and Mykel J. Kochenderfer. Deep Variational Koopman
Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control.
arXiv:1902.09742 [cs, stat], June 2019.

72

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8026–8037.
Curran Associates, Inc., 2019.

[RTS65] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic systems.
AIAA Journal, 3(8):1445–1450, 1965.

[Rut13] Mark G. Rutten. Square-root unscented filtering and smoothing. In 2013 IEEE Eighth International
Conference on Intelligent Sensors, Sensor Networks and Information Processing, pages 294–299,
April 2013.

[SGWY92] Troy Shinbrot, Celso Grebogi, Jack Wisdom, and James A. Yorke. Chaos in a double pendulum.
American Journal of Physics, 60(6):491–499, June 1992.

[Sol10] Arno Solin. Cubature Integration Methods in Non-Linear Kalman Filtering and Smoothing. Bachelor’s
Thesis, 2010.

[VW01] R. Van der Merwe and E.A. Wan. The square-root unscented Kalman filter for state and parameter-
estimation. In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No.01CH37221), volume 6, pages 3461–3464, May 2001.

[WKR15] Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A Data–Driven Approxima-
tion of the Koopman Operator: Extending Dynamic Mode Decomposition. Journal of Nonlinear
Science, 25(6):1307–1346, December 2015.

73

A. Notes on the Koopman Inference Algorithm

A.1. Full Derivation

In this appendix we cover the full derivation of the Koopman inference algorithm, starting with the formulation
of the expected log-likelihood, going over the M-step and finally to the E-step with the regular, non-square-root,
filter/smoother equations.
Our model is given as

p(st | st−1) ∼ N (Ast−1,Q)

p(yt | st) ∼ N
(︁
g(st),R

)︁
with diagonal noise covariances Q and R.

M-Step For a single observation sequence, the log-likelihood log p
(︂
s
(n)
1:T ,y

(n)
1:T

)︂
is given as,

log p
(︂
s
(n)
1:T ,y

(n)
1:T

)︂
= log

(︄
p
(︂
s
(n)
1

)︂ T∏︂
t=2

p
(︂
s
(n)
t | s

(n)
t−1

)︂ T∏︂
t=1

p
(︂
y
(n)
t | s

(n)
t

)︂)︄

= log p
(︂
s
(n)
1

)︂
+

T∑︂
t=2

log p
(︂
s
(n)
t | s

(n)
t−1

)︂
+

T∑︂
t=1

log p
(︂
y
(n)
t | s

(n)
t

)︂
= −1

2
log|V0| −

k

2
log (2π)− 1

2

(︂
s
(n)
1 −m0

)︂T
V−1

0

(︂
s
(n)
1 −m0

)︂
+

T∑︂
t=2

−1

2
log|Q| − k

2
log (2π)− 1

2

(︂
s
(n)
t −As

(n)
t−1

)︂T
Q−1

(︂
s
(n)
t −As

(n)
t−1

)︂
+

T∑︂
t=1

−1

2
log|R| − p

2
log (2π)− 1

2

(︂
y
(n)
t − g

(n)
t

)︂T
R−1

(︂
y
(n)
t − g

(n)
t

)︂
= −T (k + p)

2
log(2π)− 1

2
log|V0| −

T − 1

2
log|Q| − T

2
log|R|

− 1

2

(︂
s
(n)
1 −m0

)︂T
V−1

0

(︂
s
(n)
1 −m0

)︂
− 1

2

T∑︂
t=2

(︂
s
(n)
t −As

(n)
t−1

)︂T
Q−1

(︂
s
(n)
t −As

(n)
t−1

)︂
− 1

2

T∑︂
t=1

(︂
y
(n)
t − g

(n)
t

)︂T
R−1

(︂
y
(n)
t − g

(n)
t

)︂

75

as the system behaves Markovian and m0 and V0 are the initial state mean and covariance. We assume the
observation sequences to be independently and identically distributed (i.i.d.), we can formulate the joint
complete log-likelihood log p(s1:T ,y1:T) as the sum of all subsequent log-likelihoods:

log p(s1:T ,y1:T) = log

N∏︂
n=1

p
(︂
s
(n)
1:T ,y

(n)
1:T

)︂
=

N∑︂
n=1

log p
(︂
s
(n)
1:T ,y

(n)
1:T

)︂
= −NT (k + p)

2
log(2π)− N

2
log|V0| −

N(T − 1)

2
log|Q| − NT

2
log|R|

− 1

2

N∑︂
n=1

(︂
s
(n)
1 −m0

)︂T
V−1

0

(︂
s
(n)
1 −m0

)︂
− 1

2

N∑︂
n=1

T∑︂
t=2

(︂
s
(n)
t −As

(n)
t−1

)︂T
Q−1

(︂
s
(n)
t −As

(n)
t−1

)︂
− 1

2

N∑︂
n=1

T∑︂
t=1

(︂
y
(n)
t − g

(n)
t

)︂T
R−1

(︂
y
(n)
t − g

(n)
t

)︂
To derive the M-step formulas, we need to maximize the expected log-likelihood. Therefore, we will now derive
the expected log-likelihood:

Q = E
[︁
p(s1:T ,y1:T) |y1:T

]︁
This quantity depends on five expectations ŝ(n)t|t0 , P

(n)
t|t0 , P

(n)
t,t−1|t0 , ĝ

(n)
t and G

(n)
t as defined in equations (5.1)

through (5.5) in section 5.1. For brevity, let

q1 := −
NT (k + p)

2
log(2π)− N

2
log|V0| −

N(T − 1)

2
log|Q| − NT

2
log|R|

q2 := −
1

2

N∑︂
n=1

(︂
s
(n)
1 −m0

)︂T
V−1

0

(︂
s
(n)
1 −m0

)︂
q3 := −

1

2

N∑︂
n=1

T∑︂
t=2

(︂
s
(n)
t −As

(n)
t−1

)︂T
Q−1

(︂
s
(n)
t −As

(n)
t−1

)︂
q4 := −

1

2

N∑︂
n=1

T∑︂
t=1

(︂
y
(n)
t − g

(n)
t

)︂T
R−1

(︂
y
(n)
t − g

(n)
t

)︂
such that log p(s1:T ,y1:T) = q1+q2+q3+q4 and, withQ1,Q2,Q3 andQ4 being the corresponding expectations,
Q = Q1 +Q2 +Q3 +Q4.

We will now evaluate the respective expectations.

• Compute Q1:

Q1 = E[q1 |y1:T] = −
NT (k + p)

2
ln(2π)− N

2
ln|V0| −

N(T − 1)

2
ln|Q| − NT

2
ln|R|

76

• Compute Q2:

Q2 = E[q2 |y1:T]

= E

[︄
− 1

2

N∑︂
n=1

(︂
s
(n)
1 −m0

)︂T
V−1

0

(︂
s
(n)
1 −m0

)︂ ⃓⃓⃓⃓⃓y1:T

]︄

= −1

2

N∑︂
n=1

E

[︄(︂
s
(n)
1 −m0

)︂T
V−1

0

(︂
s
(n)
1 −m0

)︂ ⃓⃓⃓⃓⃓y1:T

]︄

= −1

2

N∑︂
n=1

E

[︄
tr

(︃(︂
s
(n)
1 −m0

)︂T
V−1

0

(︂
s
(n)
1 −m0

)︂)︃ ⃓⃓⃓⃓⃓y1:T

]︄

= −1

2

N∑︂
n=1

E

[︄
tr

(︃(︂
s
(n)
1 −m0

)︂(︂
s
(n)
1 −m0

)︂T
V−1

0

)︃ ⃓⃓⃓⃓
⃓y1:T

]︄

= −1

2

N∑︂
n=1

E

[︄
tr

(︃(︂
s
(n)
1 −m0

)︂(︂
s
(n),T
1 −mT

0

)︂
V−1

0

)︃ ⃓⃓⃓⃓
⃓y1:T

]︄

= −1

2

N∑︂
n=1

E

[︄
tr

(︃(︂
s
(n)
1 s

(n),T
1 − s

(n)
1 mT

0 −ms
(n),T
1 +m0m

T
0

)︂
V−1

0

)︃ ⃓⃓⃓⃓
⃓y1:T

]︄

= −1

2

N∑︂
n=1

tr
(︂
P

(n)
1 V−1

0 − ŝ
(n)
1 mT

0 V
−1
0 −mŝ

(n),T
1 V−1

0 +m0m
T
0 V

−1
0

)︂
= −1

2

N∑︂
n=1

tr
(︂
P

(n)
1 V−1

0

)︂
− tr

(︂
ŝ
(n)
1 mT

0 V
−1
0

)︂
− tr

(︂
m0ŝ

(n),T
1 V−1

0

)︂
+ tr

(︂
m0m

T
0 V

−1
0

)︂
= −N

2
tr
(︂
P1V

−1
0

)︂
+

N

2
tr
(︂
ŝ1m

T
0 V

−1
0

)︂
+

N

2
tr
(︂
m0ŝ

T
1 V

−1
0

)︂
− N

2
tr
(︂
m0m

T
0 V

−1
0

)︂

77

• Compute Q3:

Q3 = E[q3 |y1:T]

= E

[︄
− 1

2

N∑︂
n=1

T∑︂
t=2

(︂
s
(n)
t −As

(n)
t−1

)︂T
Q−1

(︂
s
(n)
t −As

(n)
t−1

)︂ ⃓⃓⃓⃓⃓y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=2

E

[︄(︂
s
(n)
t −As

(n)
t−1

)︂T
Q−1

(︂
s
(n)
t −As

(n)
t−1

)︂ ⃓⃓⃓⃓⃓y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=2

E

[︄
tr

(︃(︂
s
(n)
t −As

(n)
t−1

)︂T
Q−1

(︂
s
(n)
t −As

(n)
t−1

)︂)︃ ⃓⃓⃓⃓⃓y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=2

E

[︄
tr

(︃(︂
s
(n)
t −As

(n)
t−1

)︂(︂
s
(n)
t −As

(n)
t−1

)︂T
Q−1

)︃ ⃓⃓⃓⃓
⃓y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=2

E

[︄
tr

(︃(︂
s
(n)
t −As

(n)
t−1

)︂(︂
s
(n),T
t − s

(n),T
t−1 AT

)︂
Q−1

)︃ ⃓⃓⃓⃓
⃓y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=2

E

[︄
tr

(︃(︂
s
(n)
t s

(n),T
t − s

(n)
t s

(n),T
t−1 AT −As

(n)
t−1s

(n),T
t −As

(n)
t−1s

(n),T
t−1 AT

)︂
Q−1

)︃ ⃓⃓⃓⃓
⃓y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=2

tr
(︂
P

(n)
t Q−1 −P

(n)
t,t−1A

TQ−1 −A P
(n)
t−1,t⏞ ⏟⏟ ⏞

=P
(n)
t,t−1

Q−1 −AP
(n)
t−1A

TQ−1
)︂

= −1

2

N∑︂
n=1

T∑︂
t=2

tr
(︂
P

(n)
t Q−1

)︂
− tr

(︂
P

(n)
t,t−1A

TQ−1
)︂
− tr

(︂
AP

(n)
t,t−1Q

−1
)︂
− tr

(︂
AP

(n)
t−1A

TQ−1
)︂

= −N

2

T∑︂
t=2

tr
(︂
PtQ

−1
)︂
− tr

(︂
Pt,t−1A

TQ−1
)︂
− tr

(︂
APt,t−1Q

−1
)︂
− tr

(︂
APt−1A

TQ−1
)︂

78

• Compute Q4:

Q4 = E[q4 |y1:T]

= E

[︄
− 1

2

N∑︂
n=1

T∑︂
t=1

(︂
y
(n)
t − g

(n)
t

)︂T
R−1

(︂
y
(n)
t − g

(n)
t

)︂ ⃓⃓⃓⃓
y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=1

E

[︄(︂
y
(n)
t − g

(n)
t

)︂T
R−1

(︂
y
(n)
t − g

(n)
t

)︂ ⃓⃓⃓⃓
y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=1

E

[︄
tr

(︃(︂
y
(n)
t − g

(n)
t

)︂T
R−1

(︂
y
(n)
t − g

(n)
t

)︂)︃ ⃓⃓⃓⃓
y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=1

E

[︄
tr

(︃(︂
y
(n)
t − g

(n)
t

)︂(︂
y
(n)
t − g

(n)
t

)︂T
R−1

)︃ ⃓⃓⃓⃓
y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=1

E

[︄
tr

(︃(︂
y
(n)
t − g

(n)
t

)︂(︂
y
(n),T
t − g

(n),T
t

)︂
R−1

)︃ ⃓⃓⃓⃓
y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=1

E

[︄
tr

(︃(︂
y
(n)
t y

(n),T
t − y

(n)
t g

(n),T
t − g

(n)
t y

(n),T
t + g

(n)
t g

(n),T
t

)︂
R−1

)︃ ⃓⃓⃓⃓
y1:T

]︄

= −1

2

N∑︂
n=1

T∑︂
t=1

tr
(︂
y
(n)
t y

(n),T
t R−1 − y

(n)
t ĝ

(n),T
t R−1 − ĝ

(n)
t y

(n),T
t R−1 +G

(n)
t R−1

)︂
= −1

2

N∑︂
n=1

T∑︂
t=1

tr
(︂
y
(n)
t y

(n),T
t R−1

)︂
− tr

(︂
y
(n)
t ĝ

(n),T
t R−1

)︂
− tr

(︂
ĝ
(n)
t y

(n),T
t R−1

)︂
+ tr

(︂
G

(n)
t R−1

)︂

79

Putting it all together, the expected complete log-likelihood across all observation sequences is given as

Q = Q1 +Q2 +Q3 +Q4

= −NT (k + p)

2
ln(2π)− N

2
ln|V0| −

N(T − 1)

2
ln|Q| − NT

2
ln|R|

− N

2
tr
(︂
P1V

−1
0

)︂
+

N

2
tr
(︂
ŝ1m

T
0 V

−1
0

)︂
+

N

2
tr
(︂
m0ŝ

T
1 V

−1
0

)︂
− N

2
tr
(︂
m0m

T
0 V

−1
0

)︂
− N

2

T∑︂
t=2

tr
(︂
PtQ

−1
)︂
− tr

(︂
Pt,t−1A

TQ−1
)︂
− tr

(︂
APt,t−1Q

−1
)︂
− tr

(︂
APt−1A

TQ−1
)︂

− 1

2

N∑︂
n=1

T∑︂
t=1

tr
(︂
y
(n)
t y

(n),T
t R−1

)︂
− tr

(︂
y
(n)
t ĝ

(n),T
t R−1

)︂
− tr

(︂
ĝ
(n)
t y

(n),T
t R−1

)︂
+ tr

(︂
G

(n)
t R−1

)︂
where Q1, Q2, Q3 and Q4 are functions of the parameters A, Q, θ, R, m0 and V0:

Q1 = Q1(V0,Q,R)

Q2 = Q2(m0,V0)

Q3 = Q3(A,Q)

Q4 = Q4(θ,R)

We can now derive the M-step equations by maximizing Q. To maximize Q w.r.t. all parameters, that is
• state dynamics matrix A,
• state noise covariance Q,
• measurement function parameters θ,
• measurement noise covariance R,
• initial state mean m0 and
• initial state covariance V0,

we have to take the derivatives w.r.t. to all the above parameters and set them to zero.

• State dynamics matrix A:

∂Q

∂A
=

∂Q1

∂A
+

∂Q2

∂A
+

∂Q3

∂A
+

∂Q4

∂A
=

∂Q3

∂A

= −N

2

T∑︂
t=2

−Q−1Pt,t−1 −Q−TPT
t,t−1 +Q−TAPT

t−1 +Q−1APt−1

(1)
= −N

T∑︂
t=2

−Q−1Pt,t−1 +Q−1APt−1
!
= 0

=⇒ Anew =

(︄
T∑︂
t=2

Pt,t−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−1

(A.1)

1 Covariance and correlation matrices (Q, R, Pt, Pt,t−1) are symmetric by definition.

80

• State noise covariance Q:
Instead of maximizing w.r.t. Q, we can also minimize w.r.t. Q−1 which has the same effect.

∂Q

∂Q−1 =
∂Q1

∂Q−1 +
∂Q2

∂Q−1 +
∂Q3

∂Q−1 +
∂Q4

∂Q−1 =
∂Q1

∂Q−1 +
∂Q3

∂Q−1

(2)
=

N(T − 1)

2
Q− N

2

T∑︂
t=2

PT
t −APT

t,t−1 −PT
t,t−1A

T +APT
t−1A

T

=
N(T − 1)

2
Q− N

2

T∑︂
t=2

Pt −APt,t−1 −Pt,t−1A
T +APt−1A

T

=
N(T − 1)

2
Q− N

2

T∑︂
t=2

Pt +
N

2

T∑︂
t=2

APt,t−1 +
N

2

T∑︂
t=2

Pt,t−1A
T − N

2

T∑︂
t=2

APt−1A
T

=
N(T − 1)

2
Q− N

2

T∑︂
t=2

Pt +
N

2
Anew

T∑︂
t=2

Pt,t−1 +
N

2

(︄
T∑︂
t=2

Pt,t−1

)︄(︁
Anew

)︁T
− N

2
Anew

(︄
T∑︂
t=2

Pt−1

)︄(︁
Anew

)︁T
=

N(T − 1)

2
Q− N

2

T∑︂
t=2

Pt +
N

2
Anew

T∑︂
t=2

Pt,t−1 +
N

2

(︄
T∑︂
t=2

Pt,t−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−T(︄ T∑︂
t=2

Pt,t−1

)︄T

− N

2

(︄
T∑︂
t=2

Pt,t−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−1(︄ T∑︂
t=2

Pt−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−T(︄ T∑︂
t=2

Pt,t−1

)︄T

=
N(T − 1)

2
Q− N

2

T∑︂
t=2

Pt +
N

2
Anew

T∑︂
t=2

Pt,t−1 +
N

2

(︄
T∑︂
t=2

Pt,t−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−1(︄ T∑︂
t=2

Pt,t−1

)︄

− N

2

(︄
T∑︂
t=2

Pt,t−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−1

�������������(︄
T∑︂
t=2

Pt−1

)︄(︄
T∑︂
t=2

Pt−1

)︄−1(︄ T∑︂
t=2

Pt,t−1

)︄

=
N(T − 1)

2
Q− N

2

(︄
T∑︂
t=2

Pt −Anew
T∑︂
t=2

Pt,t−1

)︄
!
= 0

=⇒ Qnew =
1

T − 1

(︄
T∑︂
t=2

Pt −Anew
T∑︂
t=2

Pt,t−1

)︄
(A.2)

2 Note that ∂
∂Q−1 ln detQ = ∂

∂Q−1 ln det
(︁
Q−1

)︁−1
=

(︃
∂

∂ det
(︁
Q−1

)︁−1 ln det
(︁
Q−1

)︁−1
)︃(︃

∂
∂Q−1 det

(︁
Q−1

)︁−1
)︃

cov. matrix
= −Q

81

• Initial state mean m0:

∂Q

∂m0
=

∂Q1

∂m0
+

∂Q2

∂m0
+

∂Q3

∂m0
+

∂Q4

∂m0
=

∂Q2

∂m0

=
N

2
V−1

0 ŝ1 +
N

2
V−T

0 ŝ1 −
N

2

(︁
V−1

0 m0 +V−T
0 m0

)︁
= NV−1

0 ŝ1 −NV−1
0 m0

= NV−1
0

(︁
ŝ1 −m0

)︁ !
= 0

=⇒ mnew
0 = ŝ1 =

1

N

N∑︂
n=1

ŝ
(n)
1 (A.3)

• Initial state covariance V0:

∂Q

∂V−1
0

=
∂Q1

∂V−1
0

+
∂Q2

∂V−1
0

+
∂Q3

∂V−1
0

+
∂Q4

∂V−1
0

=
∂Q1

∂V−1
0

+
∂Q2

∂V−1
0

=
N

2
V0 −

N

2
PT

1 +
N

2
m0ŝ

T
1 +

N

2
ŝ1m

T
0 −

N

2
m0m

T
0

=
N

2
V0 −

N

2
PT

1 +
N

2
ŝ1ŝ

T
1 +

N

2
ŝ1ŝ

T
1 −

N

2
ŝ1ŝ

T
1

=
N

2
V0 −

N

2
PT

1 +
N

2
ŝ1ŝ

T
1

!
= 0

=⇒ Vnew
0 = P1 − ŝ1ŝ

T
1 (A.4)

• Measurement noise covariance R:

∂Q

∂R−1 =
∂Q1

∂R−1 +
∂Q2

∂R−1 +
∂Q3

∂R−1 +
∂Q4

∂R−1 =
∂Q1

∂R−1 +
∂Q4

∂R−1

=
NT

2
R− 1

2

N∑︂
n=1

T∑︂
t=1

y
(n)
t y

(n),T
t − ĝ

(n)
t y

(n),T
t − y

(n)
t ĝ

(n),T
t +G

(n),T
t

!
= 0

=⇒ Rnew =
1

NT

N∑︂
n=1

T∑︂
t=1

y
(n)
t y

(n),T
t − ĝ

(n)
t y

(n),T
t − y

(n)
t ĝ

(n),T
t +G

(n),T
t (A.5)

This concludes the full derivation of the M-step equations. See section 5.1 for the final equations and how to
apply the cubature rules to them.

82

E-Step We will now derive the E-step equations if we where not doing square-root filtering/smoothing.
See subsection 4.3.3 and section 5.1 for the equations for that version.

To get the expectations ŝ(n)t , P(n)
t and P

(n)
t,t−1, we need to calculate the distribution p

(︂
s
(n)
t

⃓⃓
y1:T

)︂
for each

time step t (and, consequently, for each observation sequence n). This is exactly the posterior distribution
calculated by a smoother. Thus we divide the E-step into two parts [Min99]:

1. Filtering: To calculate the posterior distribution p
(︂
s
(n)
t

⃓⃓
y1:t

)︂
, we employ a Gaussian filter similar to the

standard Kalman filter.

2. Smoothing: To calculate the smoothed posterior distribution p
(︂
s
(n)
t

⃓⃓
y1:T

)︂
, we employ a Gaussian RTS

smoother.

Forward Pass

To derive the forward pass equations, we utilize the groundwork done in [DO11] which concludes that the
filter is given as

ŝ
(n)
t|t = ŝ

(n)
t|t−1 +K

(n)
t|t−1

(︂
y
(n)
t − ŷ

(n)
t|t−1

)︂
V

(n)
t|t = V

(n)
t|t−1 −K

(n)
t|t−1S

(n)
t|t−1K

(n),T
t|t−1

with K
(n)
t|t−1 = P

(n)
t|t−1

(︂
S
(n)
t|t−1

)︂−1
and the expectations and covariances

ŝ
(n)
t|t−1

:= E
s
(n)
t

[︂
s
(n)
t

⃓⃓⃓
y1:t−1

]︂
(A.6)

V
(n)
t|t−1

:= Cov
s
(n)
t

[︂
s
(n)
t

⃓⃓⃓
y1:t−1

]︂
(A.7)

ŷ
(n)
t|t−1

:= E
y
(n)
t

[︂
y
(n)
t

⃓⃓⃓
y1:t−1

]︂
(A.8)

S
(n)
t|t−1

:= Cov
y
(n)
t

[︂
y
(n)
t

⃓⃓⃓
y1:t−1

]︂
(A.9)

P
(n)
t|t−1

:= Cov
s
(n)
t ,y

(n)
t

[︂
s
(n)
t ,y

(n)
t

⃓⃓⃓
y1:t−1

]︂
(A.10)

which are priors for the state, state covariance, measurement, measurement covariance and cross-covariance,
respectively. As in our case only the measurements are nonlinear, we can easily evaluate the prior state (A.6)

83

and the prior covariance (A.7) by exploiting the linearity of the expectation operator:

ŝ
(n)
t|t−1 = E

s
(n)
t

[︂
s
(n)
t

⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t−1,w

(n)
t

[︂
As

(n)
t−1 +w

(n)
t

⃓⃓⃓
y1:t−1

]︂
= AE

s
(n)
t−1

[︂
s
(n)
t−1

⃓⃓⃓
y1:t−1

]︂
= Aŝ

(n)
t−1|t−1

V
(n)
t|t−1 = Cov

s
(n)
t

[︂
s
(n)
t

⃓⃓⃓
y1:t−1

]︂
= Cov

s
(n)
t−1

[︂
As

(n)
t−1

⃓⃓⃓
y1:t−1

]︂
+Cov

w
(n)
t

[︂
w

(n)
t

⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t

[︂
s
(n)
t s

(n),T
t

⃓⃓⃓
y1:t−1

]︂
− E

s
(n)
t

[︂
s
(n)
t

]︂
ET

s
(n)
t

[︂
s
(n)
t

]︂
+Q

= E
s
(n)
t−1

[︂
As

(n)
t−1s

(n),T
t−1 AT

⃓⃓⃓
y1:t−1

]︂
− ŝ

(n)
t|t−1ŝ

(n),T
t|t−1 +Q

= AE
s
(n)
t−1

[︂
s
(n)
t−1s

(n),T
t−1

⃓⃓⃓
y1:t−1

]︂
AT −Aŝ

(n)
t−1|t−1ŝ

(n),T
t−1|t−1A

T +Q

= A

(︃
E
s
(n)
t−1

[︂
s
(n)
t−1s

(n),T
t−1

⃓⃓⃓
y1:t−1

]︂
− ŝ

(n)
t−1|t−1ŝ

(n),T
t−1|t−1

)︃
AT +Q

= ACov
s
(n)
t−1

[︂
s
(n)
t−1

⃓⃓⃓
y1:t−1

]︂
+Q

= AV
(n)
t−1|t−1A

T +Q

But we are using a nonlinear measurement function g(·). Hence, it is not possible to compute the integrals
produced by the expectations/covariances (A.8), (A.9) and (A.10). As in the derivation of the M-step, we
apply cubature methods to approximate the integrals:

ŷ
(n)
t|t−1 = E

y
(n)
t

[︂
y
(n)
t

⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t ,v

(n)
t

[︂
g
(n)
t + v

(n)
t

⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t

[︂
g
(n)
t

⃓⃓⃓
y1:t−1

]︂
=

∫︂
g
(n)
t p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t

=

∫︂
g
(n)
t N

(︂
ŝ
(n)
t|t−1,V

(n)
t|t−1

)︂
ds

(n)
t

≈ SRC
[︂
g; ŝ

(n)
t|t−1,V

(n)
t|t−1

]︂
(A.11)

84

S
(n)
t|t−1 = Cov

y
(n)
t

[︂
y
(n)
t

⃓⃓⃓
y1:t−1

]︂
= Cov

s
(n)
t

[︂
g
(n)
t

⃓⃓⃓
y1:t−1

]︂
+Cov

v
(n)
t

[︂
v
(n)
t

⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t

[︂
g
(n)
t g

(n),T
t

⃓⃓⃓
y1:t−1

]︂
− E

s
(n)
t

[︂
g
(n)
t

⃓⃓⃓
y1:t−1

]︂
ET

s
(n)
t

[︂
g
(n)
t

⃓⃓⃓
y1:t−1

]︂
+R

=

∫︂
g
(n)
t g

(n),T
t p

(︂
s
(n)
t |y1:t−1

)︂
ds

(n)
t − ŷ

(n)
t|t−1ŷ

(n),T
t|t−1 +R

=

∫︂
g
(n)
t g

(n),T
t N

(︂
ŝ
(n)
t|t−1,V

(n)
t|t−1

)︂
ds

(n)
t − ŷ

(n)
t|t−1ŷ

(n),T
t|t−1 +R

≈ SRC
[︂
ggT ; ŝ

(n)
t|t−1,V

(n)
t|t−1

]︂
− ŷ

(n)
t|t−1ŷ

(n),T
t|t−1 +R (A.12)

P
(n)
t|t−1 = Cov

s
(n)
t ,y

(n)
t

[︂
s
(n)
t ,y

(n)
t

⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t ,y

(n)
t

[︂
s
(n)
t y

(n),T
t

⃓⃓⃓
y
(n)
1:t−1

]︂
− E

s
(n)
t

[︂
s
(n)
t

⃓⃓⃓
y1:t−1

]︂
ET

y
(n)
t

[︂
y
(n)
t

⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t ,y

(n)
t

[︂
s
(n)
t y

(n),T
t

⃓⃓⃓
y1:t−1

]︂
− ŝ

(n)
t|t−1ŷ

(n),T
t|t−1

= E
s
(n)
t

[︂
s
(n)
t g

(n),T
t

⃓⃓⃓
y1:t−1

]︂
− ŝ

(n)
t|t−1ŷ

(n),T
t|t−1

=

∫︂
s
(n)
t g

(n),T
t p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t − ŝ

(n)
t|t−1ŷ

(n),T
t|t−1

=

∫︂
stg

(n),T
t N

(︂
ŝ
(n)
t|t−1,V

(n)
t|t−1

)︂
dst − ŝ

(n)
t|t−1ŷ

(n),T
t|t−1

≈ SRC
[︂
ggT ; ŝ

(n)
t|t−1,V

(n)
t|t−1

]︂
− ŝ

(n)
t|t−1ŷ

(n),T
t|t−1 (A.13)

This completes the derivation of the forward pass equations.

For completeness, we summarize all of them here:

ŝ
(n)
t|t−1 = Aŝ

(n)
t−1|t−1

V
(n)
t|t−1 = AV

(n)
t−1|t−1A

T +Q

ŷ
(n)
t|t−1 = SRC

[︂
g; ŝ

(n)
t|t−1,V

(n)
t|t−1

]︂
S
(n)
t|t−1 = SRC

[︂
ggT ; ŝ

(n)
t|t−1,V

(n)
t|t−1

]︂
− ŷ

(n)
t|t−1ŷ

(n),T
t|t−1 +R

P
(n)
t|t−1 = SRC

[︂
ggT ; ŝ

(n)
t|t−1,V

(n)
t|t−1

]︂
− ŝ

(n)
t|t−1ŷ

(n),T
t|t−1

K
(n)
t|t−1 = P

(n)
t|t−1

(︂
S
(n)
t|t−1

)︂−1

ŝ
(n)
t|t = ŝ

(n)
t|t−1 +Kt|t−1

(︂
y
(n)
t − ŷ

(n)
t|t−1

)︂
V

(n)
t|t = V

(n)
t|t−1 −K

(n)
t|t−1S

(n)
t|t−1K

(n),T
t|t−1

The forward pass is initialized with ŝ
(n)
0|0 = m0 and V

(n)
0|0 = V0 for all n = 1, 2, · · ·, N .

85

Backward Pass

To derive the backward pass equations, we utilize the groundwork done in [DO11] which concludes that the
smoother is given as

ŝ
(n)
t−1|T = ŝ

(n)
t−1|t−1 + J

(n)
t−1

(︂
ŝ
(n)
t|T − ŝ

(n)
t|t−1

)︂
V

(n)
t−1|T = V

(n)
t−1|t−1 + J

(n)
t−1

(︂
V

(n)
t|T −V

(n)
t|t−1

)︂
J
(n),T
t−1

with:

J
(n)
t−1 := V

(n)
t−1,t|t−1

(︂
V

(n)
t|t−1

)︂−1

V
(n)
t−1,t|t−1

:= Cov
s
(n)
t−1,s

(n)
t

[︂
s
(n)
t−1, s

(n)
t

⃓⃓⃓
y1:t−1

]︂
(A.14)

Like for the filter, we can easily evaluate the cross-covariance matrix Vt−1,t|t−1 by exploiting the linearity of
the expectation:

V
(n)
t−1,t|t−1 = Cov

s
(n)
t−1,s

(n)
t

[︂
s
(n)
t−1, s

(n)
t

⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t−1,s

(n)
t

[︂
s
(n)
t−1s

(n),T
t

⃓⃓⃓
y1:t−1

]︂
− E

s
(n)
t−1

[︂
s
(n)
t−1

⃓⃓⃓
y1:t−1

]︂
ET

s
(n)
t

[︂
s
(n)
t

⃓⃓⃓
y1:t−1

]︂
(3)
= E

s
(n)
t−1

[︂
s
(n)
t−1s

(n),T
t−1 AT

⃓⃓⃓
y1:t−1

]︂
− ŝ

(n)
t−1|t−1ŝ

(n),T
t|t−1

= E
s
(n)
t−1

[︂
s
(n)
t−1s

(n),T
t−1

⃓⃓⃓
y1:t−1

]︂
AT − ŝ

(n)
t−1|t−1ŝ

(n),T
t−1|t−1A

T

=

(︃
E
s
(n)
t−1

[︂
s
(n)
t−1s

(n),T
t−1

⃓⃓⃓
y1:t−1

]︂
− ŝ

(n)
t−1|t−1ŝ

(n),T
t−1|t−1

)︃
AT

= Cov
s
(n)
t−1

[︂
s
(n)
t−1

⃓⃓⃓
y1:t−1

]︂
AT

= V
(n)
t−1|t−1A

T

This completes the derivation of the backward pass equations.
For completeness, we summarize all of them here:

V
(n)
t−1,t|t−1 = V

(n)
t−1|t−1A

T

J
(n)
t−1 = V

(n)
t−1,t|t−1

(︂
V

(n)
t|t−1

)︂−1

ŝ
(n)
t−1|T = ŝ

(n)
t−1|t−1 + Jt−1

(︂
ŝ
(n)
t|T − ŝ

(n)
t|t−1

)︂
(A.15)

V
(n)
t−1|T = V

(n)
t−1|t−1 + J

(n)
t−1

(︂
V

(n)
t|T −V

(n)
t|t−1

)︂
J
(n),T
t−1 (A.16)

3 Due to the independence and zero mean of the noise, it disappears in the expectation: E
s
(n)
t−1,s

(n)
t

[︂
s
(n)
t−1

(︁
s
(n)
t

)︁T ⃓⃓⃓
y1:t−1

]︂
=

E
s
(n)
t−1,w

(n)
t

[︂
s
(n)
t−1

(︂(︁
s
(n)
t−1

)︁T
AT +

(︁
w

(n)
t

)︁T)︂ ⃓⃓⃓
y1:t−1

]︂
= E

s
(n)
t−1,w

(n)
t

[︂
s
(n)
t−1

(︁
s
(n)
t−1

)︁T
AT + s

(n)
t−1

(︁
w

(n)
t

)︁T ⃓⃓⃓
y1:t−1

]︂
=

E
s
(n)
t−1,w

(n)
t

[︂
s
(n)
t−1

(︁
s
(n)
t−1

)︁T
AT

⃓⃓⃓
y1:t−1

]︂

86

According to [Min99], the self- and cross-correlations are given as

P
(n)
t = V

(n)
t|T + ŝ

(n)
t|T ŝ

(n),T
t|T

P
(n)
t,t−1 = J

(n)
t−1V

(n)
t|T + ŝ

(n)
t|T ŝ

(n),T
t−1|T

This wraps up the derivation of the E-step when not using square-root filtering. See section 5.1 for that version.

A.2. Exactness for Linear Observations

If we restrict the previous generalization of the nonlinear observation function gθ : Rk → Rp to a linear
function g(s) = Cs where θ = {C}, we can show that the approximations for ĝ(n)

t , G(n)
t , ŷ(n)

t|t−1, S
(n)
t|t−1 and

K
(n)
t|t−1 are exact, i.e. they match the real expectation/covariance value.

Theorem A.1. The spherical-radial cubature approximations for, ĝ(n)
t , G(n)

t , ŷ(n)
t|t−1, St|t−1 and Kt|t−1 are exact

(i.e. they equal the analytical result) if the observation function is linear.

Proof. Let C ∈ Rp×k be a matrix such that g(·) is linear and given as g(s) = Cs. Firstly, we will evaluate the
analytical values of the given quantities.

• Expected observation ĝ
(n)
t = E

[︂
g
(n)
t

⃓⃓⃓
y1:T

]︂
:

ĝ
(n)
t =

∫︂
Cs

(n)
t p

(︂
s
(n)
t

⃓⃓⃓
y1:T

)︂
ds

(n)
t = C

∫︂
s
(n)
t p

(︂
s
(n)
t

⃓⃓⃓
y1:T

)︂
ds

(n)
t = Cŝ

(n)
t

• Observation correlation G
(n)
t = E

[︂
g
(n)
t g

(n),T
t

⃓⃓⃓
y1:T

]︂
:

G
(n)
t =

∫︂
Cs

(n)
t s

(n),T
t CT p

(︂
s
(n)
t

⃓⃓⃓
y1:T

)︂
ds

(n)
t = C

(︄∫︂
s
(n)
t s

(n),T
t p

(︂
s
(n)
t

⃓⃓⃓
y1:T

)︂
ds

(n)
t

)︄
CT = CP

(n)
t CT

• Expected prior observation ŷ
(n)
t|t−1 = E

s
(n)
t

[︂
g
(n)
t

⃓⃓⃓
y1:t−1

]︂
:

ŷ
(n)
t|t−1 =

∫︂
Cs

(n)
t p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t = C

∫︂
s
(n)
t p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t = Cŝt|t−1

• Prior observation covariance S
(n)
t|t−1 = Cov

y
(n)
t

[︂
y
(n)
t

⃓⃓⃓
y1:t−1

]︂
:

87

S
(n)
t|t−1 =

∫︂
Cs

(n)
t s

(n),T
t CT p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t − ŷ

(n)
t|t−1ŷ

(n),T
t|t−1 +R

= C

(︄∫︂
s
(n)
t s

(n),T
t p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t

)︄
CT −Cŝ

(n)
t|t−1ŝ

(n),T
t|t−1C

T +R

= C

(︄∫︂
s
(n)
t s

(n),T
t p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t − ŝ

(n)
t|t−1ŝ

(n),T
t|t−1

)︄
⏞ ⏟⏟ ⏞

=Cov
s
(n)
t

[︁
s
(n)
t

⃓⃓
y1:t−1

]︁
CT +R

= CV
(n)
t|t−1C

T +R

• Prior observation-state covariance P
(n)
t|t−1 = Cov

s
(n)
t ,y

(n)
t

[︂
s
(n)
t ,y

(n)
t

⃓⃓⃓
y1:t−1

]︂
:

P
(n)
t|t−1 =

∫︂
s
(n)
t s

(n),T
t CT p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t − ŝ

(n)
t|t−1ŷ

(n),T
t|t−1

=

(︄∫︂
s
(n)
t s

(n),T
t p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t

)︄
CT − ŝ

(n)
t|t−1ŝ

(n),T
t|t−1C

T

=

(︄∫︂
s
(n)
t s

(n),T
t p

(︂
s
(n)
t

⃓⃓⃓
y1:t−1

)︂
ds

(n)
t − ŝ

(n)
t|t−1ŝ

(n),T
t|t−1

)︄
⏞ ⏟⏟ ⏞

=Cov
s
(n)
t

[︁
s
(n)
t

⃓⃓
y1:t−1

]︁
CT

= V
(n)
t|t−1C

T

These match exactly the well-known Kalman filter equations.

We now plug the observation function g(s) = Cs into the various cubature rules:

• Expected observation ĝ
(n)
t :

ĝ
(n)
t ≈ 1

2k

2k∑︂
i=1

g

(︃√︂
V

(n)
t ξi + ŝ

(n)
t

)︃
=

1

2k

2k∑︂
i=1

C

√︂
V

(n)
t ξi +Cŝ

(n)
t = Cŝ

(n)
t

• Observation correlation G
(n)
t :

88

G
(n)
t ≈ 1

2k

2k∑︂
i=1

g

(︃√︂
V

(n)
t ξi + ŝ

(n)
t

)︃
gT

(︃√︂
V

(n)
t ξi + ŝ

(n)
t

)︃

=
1

2k

2k∑︂
i=1

C

(︃√︂
V

(n)
t ξi + ŝ

(n)
t

)︃(︃√︂
V

(n)
t ξi + ŝ

(n)
t

)︃T

CT

=
1

2k

2k∑︂
i=1

C

(︃√︂
V

(n)
t ξiξ

T
i

√︂
V

(n)
t

T

+

√︂
V

(n)
t ξiŝ

(n),T
t + ŝ

(n)
t ξTi

√︂
V

(n)
t

T

+ ŝ
(n)
t ŝ

(n),T
t

)︃
CT

=
1

2k

2k∑︂
i=1

C

√︂
V

(n)
t ξiξ

T
i

√︂
V

(n)
t

T

CT +
1

2k

2k∑︂
i=1

CT ŝ
(n)
t ŝ

(n),T
t CT

+
1

2k������������2k∑︂
i=1

C

√︂
V

(n)
t ξiŝ

(n),T
t CT +

1

2k������������2k∑︂
i=1

Cŝ
(n)
t ξTi

√︂
V

(n),T
t CT

= C

√︂
V

(n)
t

�
�
�
�
�
�(︄

k∑︂
i=1

eie
T
i

)︄√︂
V

(n)
t

T

CT +CT ŝ
(n)
t ŝ

(n),T
t CT

= CVtC
T +CT ŝ

(n)
t ŝ

(n),T
t CT

= CP
(n)
t CT

• Expected prior observation ŷ
(n)
t|t−1:

ŷ
(n)
t|t−1 ≈

1

2k

2k∑︂
i=1

g

(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃
=

1

2k

2k∑︂
i=1

C

√︃
V

(n)
t|t−1ξi +Cŝ

(n)
t|t−1 = Cŝ

(n)
t|t−1

• Prior observation covariance St|t−1:

S
(n)
t|t−1 ≈

1

2k

2k∑︂
i=1

g

(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃
gT

(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃
− ŷ

(n)
t|t−1ŷ

(n),T
t|t−1 +R

=
1

2k

2k∑︂
i=1

C

(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃T

CT − ŷ
(n)
t|t−1ŷ

(n),T
t|t−1 +R

=
1

2k

2k∑︂
i=1

C

√︃
V

(n)
t|t−1ξiξ

T
i

√︃
V

(n)
t|t−1

T

CT +
1

2k������������2k∑︂
i=1

C

√︃
V

(n)
t|t−1ξiŝ

(n),T
t|t−1C

T

+
1

2k
�������������2k∑︂
i=1

Cŝ
(n)
t|t−1ξ

T
i

√︃
V

(n)
t|t−1

T

CT +
1

2k

2k∑︂
i=1

Cŝ
(n)
t|t−1ŝ

(n),T
t|t−1C

T⏞ ⏟⏟ ⏞
= ŷ

(n)
t|t−1

ŷ
(n),T
t|t−1

−ŷ(n)
t|t−1ŷ

(n),T
t|t−1 +R

=
1

2k

2k∑︂
i=1

C

√︃
V

(n)
t|t−1ξiξ

T
i

√︃
V

(n)
t|t−1

T

CT + ŷ
(n)
t|t−1ŷ

(n),T
t|t−1 − ŷ

(n)
t|t−1ŷ

(n),T
t|t−1 +R

= CVt|t−1C
T +R

• Prior observation-state covariance P
(n)
t|t−1:

89

P
(n)
t|t−1 ≈

1

2k

2k∑︂
i=1

(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃
gT

(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃
− ŝ

(n)
t|t−1ŷ

(n),T
t|t−1

=
1

2k

2k∑︂
i=1

(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃(︃√︃
V

(n)
t|t−1ξi + ŝ

(n)
t|t−1

)︃T

CT − ŝ
(n)
t|t−1ŷ

(n),T
t|t−1

=
1

2k

2k∑︂
i=1

√︃
V

(n)
t|t−1ξiξ

T
i

√︃
V

(n)
t|t−1

T

CT +
�������������
1

2k

2k∑︂
i=1

√︃
V

(n)
t|t−1ξiŝ

(n),T
t|t−1C

T

+

��������������
1

2k

2k∑︂
i=1

ŝ
(n)
t|t−1ξ

T
i

√︃
V

(n)
t|t−1

T

CT +
1

2k

2k∑︂
i=1

ŝ
(n)
t|t−1ŝ

(n),T
t|t−1C

T⏞ ⏟⏟ ⏞
= ŝ

(n)
t|t−1

ŷ
(n),T
t|t−1

−ŝ(n)t|t−1ŷ
(n),T
t|t−1

=
1

2k

2k∑︂
i=1

√︃
V

(n)
t|t−1ξiξ

T
i

√︃
V

(n)
t|t−1

T

CT + ŝ
(n)
t|t−1

(︂
ŷ
(n)
t|t−1

)︂T
− ŝ

(n)
t|t−1

(︂
ŷ
(n)
t|t−1

)︂T
= V

(n)
t|t−1C

T

All these equations match exactly the analytic equations we derived before. Thus, the cubature rule is exact if
g(·) is a linear function.

90

B. Experiments and Discussion

In this chapter we collect the plots of the Experiments and Discussion chapters that would have cluttered the
chapters to much while not adding much information.

B.1. Plots for Running on the CPU or GPU

Plot overview:
• Double pendulum experiment on CPU: Figure B.1
• Double pendulum experiment on GPU: Figure B.1

B.2. Plots for Single- and Multi-Sequence Learning

Plot overview:
• Damped pendulum experiment on a single observation sequence: Figure B.3
• Damped pendulum experiment on a multiple (two) observation sequence: Figure B.4

B.3. Remaining Plots

B.3.1. Pendulum

Plot overview:
• Pendulum, 2-dimensional latent: Figure B.5
• Pendulum, 14-dimensional latent: Figure B.6

B.3.2. Damped Pendulum

Plot overview:
• Damped pendulum, 2-dimensional latent: Figure B.7
• Damped pendulum, 30-dimensional latent: Figure B.8

91

Figure B.1.: Rollout of the double pendulum experiment that ran on the CPU.

92

Figure B.2.: Rollout of the double pendulum experiment that ran on the GPU.

Figure B.3.: Rollout of the damped pendulum experiment learning on a single observation sequence.

93

Figure B.4.: Rollout of the damped pendulum experiment learning on multiple (two) observation sequences.
The top row is the first observation sequence, the bottom row is the second observation sequence.

94

Figure B.5.: The rollout plot in the observation space of the pendulum environment for k = 2. The left plot
shows the displacement and the right plot the angular velocity. The black dots represent the
true data of which the model used everything until the red prediction boundary to train on. The
blue line is the rollout, starting from the learned initial value (marked with a green star). The
orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting
from the last smoothed state, forming the “smoothed prediction”. The shaded regions show the
confidence, i.e. two times the standard deviation.

Figure B.6.: The rollout plot in the observation space of the pendulum environment for k = 14. The left plot
shows the displacement and the right plot the angular velocity. The black dots represent the
true data of which the model used everything until the red prediction boundary to train on. The
blue line is the rollout, starting from the learned initial value (marked with a green star). The
orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting
from the last smoothed state, forming the “smoothed prediction”. The shaded regions show the
confidence, i.e. two times the standard deviation.

95

Figure B.7.: The rollout plot in the observation space of the damped pendulum environment for k = 2. The
left plot shows the displacement and the right plot the angular velocity. The black dots represent
the true data of which the model used everything until the red prediction boundary to train on.
The blue line is the rollout, starting from the learned initial value (marked with a green star).
The orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout
starting from the last smoothed state, forming the “smoothed prediction”. The shaded regions
show the confidence, i.e. two times the standard deviation.

Figure B.8.: The rollout plot in the observation space of the damped pendulum environment for k = 30. The
left plot shows the displacement and the right plot the angular velocity. The black dots represent
the true data of which the model used everything until the red prediction boundary to train on.
The blue line is the rollout, starting from the learned initial value (marked with a green star).
The orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout
starting from the last smoothed state, forming the “smoothed prediction”. The shaded regions
show the confidence, i.e. two times the standard deviation.

96

Figure B.9.: The rollout plot in the observation space of the Gym pendulum environment for k = 2. The left
plot shows the displacement and the right plot the angular velocity. The black dots represent the
true data of which the model used everything until the red prediction boundary to train on. The
blue line is the rollout, starting from the learned initial value (marked with a green star). The
orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting
from the last smoothed state, forming the “smoothed prediction”. The shaded regions show the
confidence, i.e. two times the standard deviation.

B.3.3. Gym Pendulum

Plot overview:

• Gym pendulum, 2-dimensional latent: Figure B.9

• Gym pendulum, 7-dimensional latent: Figure B.10

B.3.4. Gym Cartpole

Plot overview:

• Cartpole, 2-dimensional latent rollout without confidence: Figure B.11, with confidence: Figure B.12

• Cartpole, 10-dimensional latent, rollout without confidence: Figure B.13

• Cartpole, 14-dimensional latent rollout with confidence: Figure B.14, without confidence: Figure B.15

97

Figure B.10.: The rollout plot in the observation space of the pendulum environment for k = 7. The left plot
shows the displacement and the right plot the angular velocity. The black dots represent the
true data of which the model used everything until the red prediction boundary to train on.
The blue line is the rollout, starting from the learned initial value (marked with a green star).
The orange dash-dotted line is the smoothed data. The dotted orange line then is the rollout
starting from the last smoothed state, forming the “smoothed prediction”. The shaded regions
show the confidence, i.e. two times the standard deviation.

98

Figure B.11.: The rollout plot in the observation space of the cartpole environment for k = 2. The top plot is
the cart position (left) and velocity (right), the row the pole displacement (left) and angular
velocity (right). The black dots represent the true data of which the model used everything
until the red prediction boundary to train on. The blue line is the rollout, starting from the
learned initial value (marked with a green star). The orange dash-dotted line is the smoothed
data. The dotted orange line then is the rollout starting from the last smoothed state, forming
the “smoothed prediction”. Note that we have removed the confidence on this plot as it is really
low, resulting in high variances. See Figure B.12 in section B.3 for the plot with confidence.

99

Figure B.12.: This plot shows the same data as in Figure B.11, but with the confidence shown. As the
confidence is quite low, this plot is hard to interpret which is the reason why we removed the
confidence plot in the first place.

Figure B.13.: This plot shows the same data as in Figure 6.15, but without the confidence shown.

100

Figure B.14.: The rollout plot in the observation space of the cartpole environment for k = 14. The top plot
is the cart position (left) and velocity (right), the row the pole displacement (left) and angular
velocity (right). The black dots represent the true data of which the model used everything until
the red prediction boundary to train on. The blue line is the rollout, starting from the learned
initial value (marked with a green star). The orange dash-dotted line is the smoothed data.
The dotted orange line then is the rollout starting from the last smoothed state, forming the
“smoothed prediction”. The shaded regions show the confidence, i.e. two times the standard
deviation. As the variances in the top plots are still very high, see Figure B.15 in section B.3 for
the plot without the confidence.

101

Figure B.15.: This plot shows the same data as in Figure B.14, but without the confidence shown.

B.3.5. Gym Double Pendulum

Plot overview:
• Double pendulum, 3-dimensional latent: Figure B.16
• Double pendulum, 30-dimensional latent: Figure B.17

102

Figure B.16.: The rollout plot in the observation space of the double pendulum environment for k = 3. The
top row shows the cosine/sine of the displacement of the inner pendulum, the middle row
shows the cosine/sine of the displacement of the outer pendulum and the bottom row shows
the angular velocity of the inner and outer pendulum. The black dots represent the true data of
which the model used everything until the red prediction boundary to train on. The blue line
is the rollout, starting from the learned initial value (marked with a green star). The orange
dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting from
the last smoothed state, forming the “smoothed prediction”. The shaded regions show the
confidence, i.e. two times the standard deviation.

103

Figure B.17.: The rollout plot in the observation space of the double pendulum environment for k = 18. The
top row shows the cosine/sine of the displacement of the inner pendulum, the middle row
shows the cosine/sine of the displacement of the outer pendulum and the bottom row shows
the angular velocity of the inner and outer pendulum. The black dots represent the true data of
which the model used everything until the red prediction boundary to train on. The blue line
is the rollout, starting from the learned initial value (marked with a green star). The orange
dash-dotted line is the smoothed data. The dotted orange line then is the rollout starting from
the last smoothed state, forming the “smoothed prediction”. The shaded regions show the
confidence, i.e. two times the standard deviation.

104

C. Miscellaneous

Solution of the Harmonic Oscillator

To solve the differential motion equation
mẍ = −kx

of the harmonic oscillator given in section 3.1, we use the solution approach
x(t) = ceλt ẋ(t) = λceλt ẍ(t) = λ2ceλt

and insert it into the differential equation:

mẍ = −kx =⇒ mλ2ceλt = −kceλt ⇐⇒ mλ2 = −k ⇐⇒ λ = ±
√︃
− k

m

As both k and m are defined to be positive, we get the complex solutions:

x1(t) = eit
√︁

k/m x2(t) = e−it
√︁

k/m

Due to the superposition principle, also x1 + x2 and x1 − x2 are solutions. Hence, we get two real solutions by
using Euler’s identity eϕi = cos(ϕ) + i sin(ϕ):

x1 + x2 = eit
√︁

k/m + e−it
√︁

k/m

= cos
(︂
t
√︁

k/m
)︂
+ i sin

(︂
t
√︁
k/m

)︂
+ cos

(︂
t
√︁
k/m

)︂
− i sin

(︂
t
√︁
k/m

)︂
= 2 cos

(︂
t
√︁
k/m

)︂
x1 − x2 = ei

√︁
k/mt − e−it

√︁
k/m

= cos
(︂
t
√︁

k/m
)︂
i sin

(︂
t
√︁

k/m
)︂
− cos

(︂
t
√︁

k/m
)︂
+ i sin

(︂
t
√︁
k/m

)︂
= 2i sin

(︂
t
√︁
k/m

)︂
This yields the following general solution:

x(t) = c1 cos
(︂
t
√︁
k/m

)︂
+ c2 sin

(︂
t
√︁
k/m

)︂
, c1, c2 ∈ C

As both Sine and Cosine are Sinusoidal, different c1 ̸= c2 only lead to a phase shift. Thus we can also write
the solution as

x(t) = A cos
(︂
t
√︁

k/m+ ϕ
)︂

with the amplitude A and the phase ϕ.

105

Overview over Notations for Linear Gaussian Dynamical Systems

Element / Definition Ghahramani [GH96] Minka [Min99] This Thesis
Time t t t
Last Timestep T T T
State xt st st
Observations yt xt yt

State Dynamics Matrix A A A
State Noise Covariance Q Γ Q
Observation Matrix C C C
Observation Noise Covariance R Σ R
Full Sequence (︁x1,x2, · · · ,xT

)︁
{x} x1:T x1:T

Subsequence (︁xt0 ,xt0+1, · · · ,xt1

)︁
{x}t1t0 xt0:t1 xt0:t1

Expected Log Likelihood Q Q Q

Predicted State xt−1
t – ŝt|t−1

Predicted Covariance Vt−1
t Pt−1 V̂t|t−1

Filtered State xt
t mt ŝt|t

Filtered Covariance Vt
t Vt V̂t|t

Smoothed State x̂t m̂t ŝt, ŝt|T
Smoothed Covariance VT

t V̂t V̂t, V̂t|T
Self-Correlation E

[︁
xtx

T
t

⃓⃓
{y}

]︁
Pt – Pt

Cross-Correlation E
[︁
xtx

T
t−1

⃓⃓
{y}

]︁
Pt,t−1 – Pt,t−1

Table C.1.: Notations used for linear Gaussian dynamical systems in different papers.

106

	Introduction
	Related Work
	Preliminaries
	Dynamical Systems
	Koopman Theory of Dynamical Systems
	The Expectation-Maximization Algorithm
	Variational Autoencoders and the Evidence Lower Bound

	Inference in Dynamical Systems
	Hidden Markov Models and LGDS
	Inference: Filtering and Smoothing
	Cubature Rules and Filtering

	The Koopman Inference Algorithm
	Formulating and Solving the Inference Problem using an EM Algorithm
	Implementation

	Experiments
	Setup
	Results

	Discussion
	Model Performance
	Comparison with Related Work
	Future Work

	Conclusion
	Notes on the Koopman Inference Algorithm
	Full Derivation
	Exactness for Linear Observations

	Experiments and Discussion
	Plots for Running on the CPU or GPU
	Plots for Single- and Multi-Sequence Learning
	Remaining Plots

	Miscellaneous

