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2 Gradient-Based Optimization without Constraints

2.1 Solution Characterization

This section covers the theoretical results for solving a nonlinear optimization problem using calculus.

2.1.1 One-Dimensional Optimization

For a one-dimensional function φ(p) : R→ R the first-order necessary condition for a minimum is that the
derivative of φ(p) w.r.t. the parameter p vanishes:

dφ(p∗)

dp
= 0

Where p∗ denotes the optimal solution, i.e. the minimum.
All solutions that fulfill this condition are candidates for a minimum. If φ is twice continuous differentiable,

the sufficient condition for a minimum is that the second-order derivative is positive:
dφ(p∗)

dp
> 0

Then p∗ is called a strict minimum. This condition is sufficient, but not necessary! The second-order necessary
condition for a minimum is that the second-order derivative is non-negative, i.e. dφ(p∗)

dp ≥ 0.

Possibilities for a Minimum

There are three cases for a minimum:
• φ(p) is twice continuously differentiable everywhere
• φ′(p) is not continuous everywhere but at p∗

• φ′(p) is not continuous everywhere, not even at p∗

While the latter case is common, it is problematic as the solution can typically not be determined analytically
(if a function is not continuous at one point, it is rarely invertible).

2.1.2 Multi-Dimensional Optimization

For multi-dimensional objective functions φ : Rnp → R, where np is the dimensionality of the parameters, the
first-order necessary condition is that the gradient vanishes:

∇φ(p∗) =


∂φ
∂p1...
∂φ

∂pnp

 =

0...
0
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If φ(p) is twice continuously differentiable, the second-order sufficient condition is that the Hessian of φ(p)
is positive definite. Analogous to the one-dimensional case, the second-order necessary condition is that the
Hessian is positive semi-definite, i.e.:

Hφ(p
∗) =


∂2φ
∂p21

· · · ∂φ2

∂pnpp1... . . . ...
∂φ2

∂p1pnp
· · · ∂2φ

∂p2np

 > 0 or respectively Hφ(p
∗) ≥ 0

Example

2.2 Numerical Gradient-Based Methods

2.2.1 Starting Point

Structure of Gradient-Based Methods

Given a initial approximation p(0), an approximation of the minimum p∗ is wanted. Gradient-based methods
are iteration methods based on the iteration rule

p(k+1) = p(k) + α(k)d(k), k = 0, 1, 2, · · ·

where

• d(k) is the search direction found as the solution of a linear sub problem and

• α(k) is the step size found by a one-dimensional line search.

The iteration terminates once p(k+1) is “close to” p∗, e.g. when the gradient nearly vanishes.

Descent Direction

Gradient-based methods have to ensure the the local search direction d(k) really is a descent direction (the
algorithm shall not “run up the hill”). This property is ensured iff the angle δ between the search direction
and the gradient ∇φ

((k)) greater than 90◦, i.e.

cos δ =

(
d(k)

)T(∇φ
(
p(k)

))∥∥d(k)
∥∥ · ∥∥∇φ

(
p(k)

)∥∥ < 0 ⇐⇒
(
d(k)

)T(∇φ
(
p(k)

))
< 0 (2.1)

This is called the “necessary descent condition”.

Algorithmic Structure

The algorithm 1 shows the basic structure of any gradient-based optimization algorithm.
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Algorithm 1: Algorithmic structure of a gradient-based optimization algorithms.
1 Initialization: Choose an initial approximation p(0), set k ← 0
2 while not converged do
3 Determine new search direction: d(k) ∈ Rnp

4 Determine new step size: α(k) ∈ R+

5 Update the approximation: p(k+1) ← p(k) + α(k)d(k)

6 k ← k + 1

2.2.2 Steepest Descent

Steepest descent is the straightforward way for getting a search direction. The search direction is just set to
the negative of the gradient:

d(k) = −∇φ
(
p(k)

)
• Advantages:

– Often quickly reaches areas around the local minimum.
– No second derivatives needed.

• Disadvantages:
– Very slow in areas around the local minimum compared to (Quasi-) Newton Methods.

2.2.3 Conjugate Gradient

Basic approach for conjugate gradient:

d(0) = −∇φ
(
p(0)

)
d(k) = Component of −∇φ

(
p(k)

) that is conjugate to d(0),d(1), · · · ,d(k−1)

For a quadratic objective function

φ(p) =
1

2
pTAp− bTp

with a positive semi-definite matrix A and constant A, b, the search direction is given as the solution of:(
d(k)

)T
Ad(j) = 0, j = 1, · · · , k − 1

With an optimal step size α(k), i.e.

α(k) = argmin
α
φ
(
p(k) + αd(k)

)
=⇒ α(k) = − 1(

d(k)
)T

Ad(k)

(
∇φ

(
p(k)

))T (
d(k)

)
the minimum of φ is reached in np steps.

The extension for nonlinear objective functions is given in algorithm 2.

• Exact line search necessary.
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Algorithm 2: Conjugate Gradient for nonlinear Objective Function.
1 Initialization: Choose an initial approximation p(0), set d(0) ← −∇φ

(
p(0)

) and k ← 0
2 while not converged do
3 α(k) ← argminα φ

(
p(k) + αd(k)

)
4 p(k+1) ← p(k) + α(k)d(k)

5 β(k+1) ←
(
∇φ
(
p(k+1)

))T(
∇φ
(
p(k+1)

))(
∇φ
(
p(k)
))T(

∇φ
(
p(k)
))

6 d(k+1) ← −∇φ
(
p(k+1)

)
+ β(k+1)d(k)

7 k ← k + 1

• Different variants of GC-algorithms mainly distinguish in the choice of of β(k).

• Advantages:
– Faster then steepest descent.
– No explicit storing of the Hessian Hφ

(
p(k)

) necessary.
– No explicit matrix-vector multiplication.
– Useful even for extreme high dimensions np.
– Exact for quadratic objectives φ(p).

• Disadvantages:
– A lot slower then (Quasi-) Newton Methods.
– In general not useful for optimizing simulation models.

2.2.4 Newton Method

Assuming the approximation of each iteration, p(k), is close to the minimum p∗, the gradient ∇φ(p∗) can be
taylor-expanded around p(k):

∇φ(p∗)
T
(
p(k)
)

= ∇φ
(
p(k)

)
+Hφ

(
p(k)

)(
p∗ − p(k)

)
+ · · · !

= 0

By leaving our the higher order terms the search direction d(k) := p∗ − p(k) is given by the solution of the
system of linear equations

Hφ

(
p(k)

)
d(k) = −∇φ

(
p(k)

)
The realization is shown in algorithm 3.

When plugging the search direction into the necessary descent condition (2.1)(
d(k)

)T(∇φ
(
p(k)

))
= −

(
∇φ

(
p(k)

)T)(
Hφ

(
p(k)

))−1(
∇φ

(
p(k)

))
< 0

it is clear that this is only fulfilled iff the Hessian is positive definite. But this is only the case in a region
around the minimum! If the approximation is far away from the minimum, the search direction might also be
an ascent direction causing the Newton method to diverge. There are two main solutions to this problem:

13



Algorithm 3: Newton Method
1 Initialization: Choose an initial approximation p(0), set k ← 0
2 while not converged do
3 Solve Hφ

(
p(k)

)
d(k) = −∇φ

(
p(k)

) for d(k)

4 α(k) ← argminα φ
(
p(k) + αd(k)

)
5 p(k+1) ← p(k) + α(k)d(k)

6 k ← k + 1

1. If the Hessian is not positive definite, replace it by an identity matrix. That is, set the search direction to
the steepest descent.

2. Regularize the equation system with a weight ν > 0 such that the new matrix is positive definite (this
“rotates” the matrix in the direction of the steepest descent such that the new search direction always
fulfills the descent condition):

(
Hφ

(
p(k)

)
+ νI

)
d(k) = −∇φ

(
p(k)

)
• Advantages:

– Near to strong local minima of twice continuous differentiable objective, the Newton method is
quadratic convergent.

• Disadvantages:
– Computationally expensive as a linear system has to be solved in every iteration.
– Not only first, but also second-order derivatives have to be available. This is a big disadvantage:

∗ In practice, the first derivative is rarely and the second derivative is never available.
∗ Even a single wrong component in the gradient or the Hessian destroys the quadratic conver-

gence.

Availability of Second-Order Derivatives

The obvious idea is to approximate the Hessian using finite differences. The approximated Hessian is then
given as

Hφ

(
p(k)

)
=

1

2

(
H̃ + H̃T )

where H̃ is given by

H̃i =
∂

∂pi

(
∇φ

(
p(k)

))
≈ 1

hi

(
∇φ

(
p(k) + hiei

)
−∇φ

(
p(k)

))
where H̃i is the i-th column of H̃. The equation (KKT.i) is used to force the Hessian to be symmetric.

Problems:

• The Hessian Hφ

(
p(k)

)
= 1

2

(
H̃ + H̃T ) is not necessarily positive definite.
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• In every iteration the Gradient has to be evaluated np times more.

• The linear system still needs to be solved.

• Only useful for high-dimensional problems with sparse gradients!

Another possibility are Quasi-Newton Methods.

2.2.5 Quasi-Newton Methods

Quasi-Newton methods are equivalent to the Newton method, however, the Hessian (or its inverse) is approxi-
mated by a positive definite matrix

Ĥ(k) ≈Hφ

(
p(k)

)
that is updated in every iteration. This yields a lot of advantages over the classic Newton method:

• Only first-order derivatives needed.

• As Ĥ constructed positive definite, the descent condition is fulfilled anytime.

• If the inverse Hessian is directly approximated, only O(n2p) multiplications instead of O(n3p) for solving
the linear system.

But how to do the Hessian update? By Taylor-expanding the gradient ∇φ
(
p(k)

) around p(k+1)

∇φ
(
p(k)

) T
(
p(k+1)

)
= ∇φ

(
p(k+1)

)
+Hφ

(
p(k+1)

)(
p(k) − p(k+1)

)
+ · · · !

= 0

and cutting off the higher-order terms, the following approximation holds:

Hφ

(
p(k+1)

)
d(k) ≈∇φ

(
p(k+1)

)
−∇φ

(
p(k)

)
The approximation of the Hessian must therefore fulfill the secant condition

H̃(k+1)d(k) = ∇φ
(
p(k+1)

)
−∇φ

(
p(k)

)
There exist a lot of different approaches for doing the Hessian updates H̃(k+1) = H̃(k) +U(k) for rank-1

or rank-2 matrices U (k):

• Approach for rank-1 corrections: H̃(k+1) = H̃(k) + β1uu
T

• Approach for rank-2 corrections: H̃(k+1) = H̃(k) + β1uu
T + β2vv

T

The vectors u,v ∈ Rnp and scalars β1, β2 ∈ R must have to be chosen such that H̃(k+1) is

• positive definite,

• symmetric,

• fulfills the secant condition and

• adding up the matrices is efficient and robust.

15



BFGS-Update

The most known rank-2 update for the Hessian is the BFGS-Update1

u = H̃(k)d(k) β1 = −
1(

d(k)
)T

H̃(k)d(k)

v = g(k) β2 =
1(

g(k)
)T

d(k)

where g(k) = ∇φ
(
p(k+1)

)
−∇φ

(
p(k)

). Plugging that into the general approach for rank-2 updates yields the
update rule for BFGS-approximations:

H̃(k+1) = H̃(k) − 1(
d(k)

)T
H̃(k)d(k)

H̃(k)d(k)
(
H̃(k)d(k)

)T
+

1(
g(k)

)T
d(k)

g(k)
(
g(k)

)T
• The direct approximation of the Hessian inverse is not really robust (e.g. for a non-optimal step size

rule).

• A better alternative is to directly approximate a useful factorization, e.g. the Cholesky decomposition.
This is more robust and equally efficient (O(n2p)).

The pseudo code for the BFGS update is shown in algorithm 4.

Algorithm 4: Quasi-Newton Method with BFGS Update.
1 Initialization: Choose an initial approximation p(0), set H̃(0) = I and k ← 0
2 while not converged do
3 Solve H̃(k)d(k) = −∇φ

(
p(k)

) for d(k)

4 α(k) ← argminα φ
(
p(k) + αd(k)

)
5 p(k+1) ← p(k) + α(k)d(k)

6 g(k) ←∇φ
(
p(k+1)

)
−∇φ

(
p(k)

)
7 H̃(k+1) ← H̃(k) − 1

(d(k))T H̃(k)d(k) H̃
(k)d(k)

(
H̃(k)d(k)

)T
+ 1

(g(k))Td(k)g
(k)
(
g(k)

)T
8 k ← k + 1

2.2.6 Comparison

2.2.7 Notes and Discussion

• The convergence of gradient-based methods can be shown under weak preconditions.

• As the search direction is only a local descent direction, gradient-based algorithms only yields local
minima.

• There is no algorithm that can guarantee to find the global minimum!

• Some approaches for determining a global minimum:
1“BFGS” stands for the authors Broyden, Fletcher, Goldfarb and Shanno.
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– Choose the initialization well, i.e. close to the global minimum.
– Execute the algorithm multiple times with different starting points.
– Validate the solution against properties of the original problem.
– Execute direct search methods beforehand to find promising regions for the local minimum search.

• Advantages:
– If gradient-based algorithms converge, they converge utterly fast.
– Efficient also for high-dimensional problems, i.e. a large np.

• Disadvantages:
– Only applicable for functions that are differentiable almost everywhere.
– Require gradient information exact up to four to eight decimal points.
– Convergence to a local minimum near the initialization p(0).
– Require some expert knowledge.

2.3 Step Size Rules, Line Search

In every iteration of gradient-based algorithms, the step size has to be determined by minimizing the one-
dimensional function:

ψ(α) = φ
(
p(k) + αd(k)

)
As the necessary first-order condition for a minimum, the derivative w.r.t. α has to vanish:

dψ
(
α(k)

)
dα

=
d

dα
φ
(
p(k) + α(k)d(k)

)
=
(
∇φ

(
p(k) + α(k)d(k)

))T
d(k) !

= 0

Thus the gradient of φ at the minimum α(k) as to be orthogonal to the search direction d(k). Intuitively, the
optimal step size has to be chosen such that the iteration step cannot go any further without ascending again
(“hitting an ascending contour line”).

Goal of the line search is to reach the minimum of ψ with least invocations of ψ as possible. Most of the
existing search methods can be classified into

• Polynomial approximation, e.g. quadratic or cubic interpolation
• Direct search methods, e.g. Fibonacci-search, golden ratio search
• Optimal vs. non-optimal search methods, e.g. by finding an improvement but not the minimum
• Usage of the gradient information ψ′ or not.
Requirements:
• Finding the α(k) with a minimal value of ψ.
• Do not waste too much computation time on the line search.

In general, an exact line search requires lots of ψ-evaluations. But how far does ψ need to be reduced in order
to guarantee convergence? In general, the condition φ(p(k) + α(k)d(k)

)
< φ

(
p(k)

) is not enough!
17



2.3.1 Inexact Line Search

Procedure: Generate and inspect a series of candidates for α(k) and terminate once one of the candidates
fulfills specific criteria, e.g. the Armijo rule or Wolfe conditions.

Armijo Rule

The Armijo rule guarantees a sufficient reduction in φ:

φ
(
p(k) + α(k)d(k)

)
≤ φ

(
p(k)

)
+ c1α

(k)
(
∇φ

(
p(k)

))T
d(k) = φ

(
p(k)

)
+ c1α

(k)ψ′(0)

Where 0 < c1 < 1 is any constant, e.g. c1 = 10−4.
Hence, the minimal reduction has to be proportional to α(k) and the derivative ψ′(0).

Curvature Condition

But a sufficient descent condition is not enough as the step sizes must not be too small (otherwise progress
would stop). Thus a second condition has to be employed, the curvature condition that requires a minimum
curvature on ψ:(

∇φ
(
p(k) + α(k)d(k)

))T
d(k) ≥ c2 ·

(
∇φ

(
p(k)

))T
d(k) = c2ψ

′(0) ⇐⇒ ψ′(p(k)
)
≥ c2ψ′(0)

Where c1 < c2 < 1 is any constant, e.g. c2 = 0.9.

Wolfe and Goldstein Conditions

Combining the Armijo rule and the curvature condition yields the Wolfe conditions that guarantee both a
minimal reduction and a minimal curvature. They are especially useful for Quasi-Newton methods as the
Wolfe conditions are scale invariant, i.e. independent of

• multiplying φ with any constant and
• affine transformations of p.
There are other possibilities are, e.g. the Goldstein conditions

φ
(
p(k)

)
+ (1− c)α(k)

(
∇φ

(
p(k)

))T
d(k) ≤ φ

(
p(k) + α(k)d(k)

)
≤ φ

(
p(k)

)
+ cα(k)

(
∇φ

(
p(k)

))T
d(k)

with any 0 < c < 1/2, that are useful for Newton, but not for Quasi-Newton methods.

2.3.2 Notes

• For gradient-based methods a step size α(k) > 1 is in general not useful because:
– The search direction d(k) is determined using a linear or quadratic Taylor approximation.
– The Taylor approximation is only valid in a small region around the current approximation p(k), i.e.
for 0 < α(k) ≤ 1.

• The local quadratic or super-linear convergence of Newton-type methods is visible in practice as the last
step can be executed with full step size α(k) = 1.
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2.4 Trust Region Methods

Gradient-based methods with line search determine a fixed search direction and adjust the step size α(k)

according to that search direction to reach global convergence.
Another approach is to determine both the length and direction of d(k). The iteration step then becomes

p(k+1) = p(k) + d(k)

without any explicit step size. The length and direction of d(k) are then determined as a solution of the
quadratic sub-problem

min
d∈Rnp

(
∇φ

(
p(k)

))T
d+

1

2
dTHφ

(
p(k)

)
d

subject to ∥d∥2 ≤ δ

where δ describes the area around the current approximation p(k) where the quadratic approximation of
φ
(
p(k) + d

) makes sense, i.e. the trust region.
The value of δ is extremely important for the efficiency of the method.
• If δ is too small, opportunities for large steps are missed.
• If δ is too large, the minimum of the quadratic approximation might be far off the minimum of the

objective if the Hessian is indefinite or negative definite.
It is possible to add a regularization parameter β ≥ 0 to the quadratic approximation(

Hφ

(
p(k)

)
+ βI

)
d = −∇φ

(
p(k)

)
such that the matrix is positive semidefinite. The solution of this regularized problem also solves the trust
region problem if either β = 0, ∥d∥ ≤ δ or β ≥ 0, ∥d∥ = δ.

2.5 Rate of Convergence

A common criteria to measure the performance of a gradient method are rates of convergence. These provide
information on how fast an algorithm converges, i.e. how fast p(k) → p∗ or

∥∥p(k) − p∗∥∥→ 0.
Definition: Let ({p(k)

} be the series of approximations produced by an optimization method. Then this
series has rate of convergence r if r is the greatest positive number such that the limit

0 ≤ lim
k→∞

∥∥p(k+1) − p∗∥∥∥∥p(k) − p∗
∥∥r = γ <∞

converges (where p∗ = limk→∞ p(k)). If r = 1, then γ < 1 has to hold for the method to converge.
A sequence is said to converge superlinearly if

lim
k→∞

∥∥p(k+1) − p∗∥∥∥∥p(k) − p∗
∥∥ = 0

holds. Even though technically this condition holds for r > 1, in practice only methods with 1 < r < 2 are
said to converge superlinearly (e.g. for r = 2, the sequence is called to converge quadratically).
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Examples

2.5.1 Gradient-Based Methods

Under ideal conditions (i.e. φ is twice continuously differentiable and Hφ(p
∗) is positive definite), all of the

following hold:

• Steepest descent is (locally) linearly convergent (with exact line search).

• The Newton method is (locally) quadratically convergent.

• Quasi-Newton methods with BFGS-update are (locally) superlinearly convergent (for inexact line search
using the Wolfe conditions).

But: Even a single wrong component in the Hessian reduced the quadratic convergence of the Newton method
to linear convergence!
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3 Gradient-Free Optimization without Constraints

This chapter covers different types of sampling methods (direct search methods):
1. Metaheuristics (random search),
2. Deterministic Sampling Methods (pattern search) and
3. Surrogate optimization.

These optimization methods only use evaluations of the objective φ and do not user gradient information
(neither analytically nor using numerical differentiation). That is, φ is used as a “Black Box” for function
evaluations.

Even for φ that are not differentiable and have lots of local minima, gradient-free algorithms are remarkably
robust, but can also fail fast.

3.1 Introduction

The objective φ that is to be optimized often has suboptimal properties, e.g.:
• the evaluation is noisy
• not differentiable
• high computation time for evaluation (e.g. when a simulation has to be run for each evaluation)
But gradient-free techniques have a wide range of applications, e.g. in automobile, aerospace industry,

robotics, financial, etc. The goal is to reduce the objective function as much as possible and find regions in
which the objective is differently sensitive w.r.t. changes in the optimization variables.

3.1.1 Simulation-Based Optimization

In a simulation-based setting, the objective is evaluated by running a simulation (e.g. by solving a set of
differential equations or running a real experiment). This yields a suboptimal setting for optimization, yet a
common one:

• Only function values are computable and not gradient information is available.
• Source code of the optimization is often not available. Hence, no information about how the simulation

is computed.
• Discontinuous/non-differentiable systems and model properties, e.g. due to collisions.
• Non-differentiable structure inside the simulation (e.g. if-else).
• Discontinuities caused by subprograms, heuristics, table data, . . .
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• Function evaluations are computationally expensive.
• Numerical “noise” overlay the actual system properties.
• Non-deterministic simulations (e.g. due to complex friction).

Hence, simulation-based optimization is a black box problem and can be solved (or approximated) using
gradient-free methods!

3.1.2 Black-Box Optimization

Naturally, gradient-based optimization methods are not well-suited for problems with “low” differentiability
and computationally expensive function evaluations. These problems may be solved using gradient-free
optimization methods. But. . .

• Gradient-based techniques are really slow in comparison to gradient-based ones for differentiable
optimization problems.

• They need a lot of function evaluations for high-dimensional problems and are thus practically only
applicable for problems with dimensions np < 100, better np < 20.

• Have lots of problems with nonlinear equality constraints!
• The theory of gradient-free methods is not as mature as the theory for gradient-based methods.

3.2 Metaheuristics

3.2.1 Evolutionary Algorithm (EA)

A evolutionary algorithm mimics the biological evolutionary strategy with random search methods.

1. Initialization: Choose one “Parent” p(0) and a number of descendants ℓ.
2. Iteration: Create ℓ descendants via “mutation”

p(k,i) = p(k) + α
(k)
i di, i = 1, · · · , ℓ

where di ∈ Rnp are vectors of Gaussian distributed variables and αi ∈ R art suitable “mutation step
sizes” Then select the descent with the lower φ value and repeat.

3.2.2 Genetic Algorithms (GA)

Genetic algorithms are inspired by biological evolutionary strategies the positive properties caused by mutation
are kept through natural selection. GAs are applicable for both real and discrete optimization variables p.

1. Initialization: Choose a suitable set of different “individuals” (first generation).
2. Evaluation: Determine the “fitness” of each candidate using the objective/fitness function.
3. Selection: Randomly select candidates of the current generation (the higher the fitness, the

higher the probability to be chosen).
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4. Recombination: Combine values (genomes) of the selected individuals and create new individuals.

5. Mutation: Randomly change the genomes.

6. New Generation: Select new individuals as the new generation and continue with step 2.

Example

3.2.3 Further Metaheuristics

Further metaheuristics based on real representations of p like in evolutionary algorithms:

• Particle Swam: Population method, uses idea of combining local and swarm knowledge, direction and
speed for particles are adjusted

• . . .

Further metaheuristics based on binary representations of p like in genetic algorithms:

• Tabu Search: A list of possible manipulations is given, another lists dynamically the inverses of them,
these cannot be applied any more

• . . .

3.3 Deterministic Sampling Methods (Pattern Search Methods)

Deterministic sampling methods can be further categorized into

• Qualitative methods: Only ranking w.r.t. to the function value.
– Simplex Methods
– Coordinate- or compass-search
– Multidirectional search
– Pattern search methods
– . . .

• Quantitative methods: Consideration of the real function values.
– Implicit filtering (based on the simplex method)
– DIRECT (dividing rectangles)
– . . .

3.3.1 Nelder-Mead Simplex Method

A simplex is a simple object that consists of np+1 points p(i) in the parameter space (which is np-dimensional).
In a 2D space, the three points form a triangle. In the iteration phase the values of φ at the corners are
compared and the simplex is transformed according to specific rules (see subsubsection 3.3.1). The algorithm
terminates once the simplex contracts onto a single point.
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Iteration Phase

The iteration phase starts by sorting the edges according to its φ-values:

φ
(
p(1)

)
≤ φ

(
p(2)

)
≤ · · · ≤ φ

(
p(np+1)

)
where p(1) is called the best point and p(np+1) is called the worst. The algorithm now tried to replace the worst
point p(np+1) with another point of the form

p(µ) = (1 + µ)p̄− µp(np+1)

Where p̄ is the centroid of the of all points except the worst, i.e.:

p̄ =
1

np

np∑
i=1

p(i)

This corresponds to a reflection of the worst point over the centroid with a weight µ that specifies “how far
the point point gets pushed out”, i.e. the ratio of the original distance of the worst point to the centroid that is
preserved while reflecting. If µ = 1, the point is mirrored.
In every iteration, the value µ is chosen of a set of four values

−1 < µic < 0 < µoc < µr < µe

for example (µic, µoc, µr, µe) = (−0.5, 0.5, 1, 2).

Algorithm

Some termination criteria are for example:
• Exactness in the objective: φ(p(np+1)

)
− φ

(
p(1)

)
≤ ε

• Maximum number of function evaluations: k = kmax

• Sufficient small distance on the simplex corners.

• Initialization: Choose a start simplex, evaluate the objective at the corners, sort them and set k = np+1.
• Iteration: While φ(p(np+1)

)
− φ

(
p(1)

)
> ε and k < kmax, do:

(a) Calculate the centroid p̄ = 1
np

∑np

i=1 p
(i).

(b) Reflection: If φ(p(1)
)
≤ φ

(
p(µr)

)
< φ

(
p(np)

), replace p(np+1) with p(µr); go to (g).
“Use the reflected point if it is better than the second worst, but not better than the best.”

(c) Expansion: If φ(p(µr)) < φ
(
p(1)

), then:
“If the reflected point is better than the best, . . . ”
– If φ(p(µe)) < φ

(
p(µr)

), replace p(np+1) with p(µe); go to (g).
“. . . and the expanded point is better than the reflected point, use the expanded point.”

– If φ(p(µr)) < φ
(
p(µe)

), replace p(np+1) with p(µr); go to (g).
“. . . and the expanded point is worst than the reflected point, use the reflected point.”

(d) Outer Contraction: If φ(p(np)
)
≤ φ

(
p(µr)

)
< φ

(
p(np+1)

), then:
“If the reflected point is better than the worst, but worst than second worst, . . . ”
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– If φ(p(µoc)) < φ
(
p(µr)

), replace p(np+1) with p(µoc); go to (g).
“. . . and the outer contraction point is better than the reflected point, use the outer contraction
point.”

– Else, go to (f).
(e) Inner Contraction: If φ(p(np+1)

)
≤ φ

(
p(µr)

), then:
“If the reflected point is worst than the worst point, . . . ”
– If φ(p(µic)) < φ

(
p(np+1)

), replace p(np+1) with p(µic); go to (g).
“. . . and the inner contraction point is better than the worst, use the inner contraction point.”

– Else, go to (f).
(f) Shrink: For all 2 ≤ i ≤ np + 1, set p(i) = p(1) − 1

2

(
p(i) − p(1)

).
(g) Sort: Sorting the current simplex corners such that φ(p(1)

)
≤ φ

(
p(2)

)
≤ · · · ≤ φ

(
p(np+1)

) holds
again. Repeat.

The Nelder-Mead method therefore always tries to create a big simplex and only shrink if every other action
would yield a worst corner/simplex.

Notes

• The method is not guaranteed to converge. But in practice, it yields good results.

• Can get stuck on a suboptimal point such that the algorithm has to be restarted with other initial simplex
corners.

Simplex-Gradient It is possible to detect stagnation using a Simplex-GradientD(k) ∈ Rnp ,D(k) =
(
V (k)

)−T
δ(k)

where V (k) is the matrix of the simplex directions

V (k) =
[
p(2) − p(1) p(3) − p(1) · · · p(np+1) − p(1)

]
=:
[
v(1) v(2) · · · v(np)

]
∈ Rnp×np

and δ(k) is the vector of the objective differences:

δ(k) =


φ
(
p(2)

)
− φ

(
p(1)

)
φ
(
p(3)

)
− φ

(
p(1)

)
...

φ
(
p(np+1)

)
− φ

(
p(1)

)
 ∈ Rnp

Analogous to a gradient-based method, this yields a condition for minimum progress

φ̂(k+1) − φ̂(k) < −α
∥∥D(k)

∥∥2, φ̂ =
1

np + 1

np+1∑
i=1

φ
(
p(i)
)

with a small α > 0. One approach for a condition on when to restart is to restart if both

φ̂(k+1) − φ̂(k) > −α
∥∥D(k)

∥∥2 and φ̂(k+1) − φ̂(k) < 0

hold.
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3.3.2 Multidirectional Search Methods

• In the Nelder-Mead method a bad conditioning of the simplex, i.e. the matrix V (k), leads to problems
that cannot be avoided.

• In multidirectional search methods this problem is avoided by making every simplex congruent to its
predecessors.

• The algorithm uses similar steps for reflection, expansion and contraction, but possibly needs a lot more
function evaluations.

3.3.3 Asynchronous Parallel Pattern Search (APPS)

• Asynchronous Parallel Pattern Search is a pattern-based search method on a grid.
• The direction of the pattern determines the descent direction.
• Patterns can be varied while maintaining their mathematical properties.
• It is “naturally” parallelizable.

3.3.4 Implicit Filtering

Implicit filtering is a descent method using “smooth” approximations of the gradients. It uses a central
approximation of the simplex gradient

D
(k)
C =

1

2

(
D(k) +D

(k)
R

)
where D

(k)
R is the gradient of the simplex that is reflected around p(k).

The structure of implicit filtering is sketched inalgorithm 5.

Algorithm 5: Implicit Filtering.
1 Initialization: Choose α, β ∈ (0, 1) and set H = I
2 while not converged do
3 Calculate φ(p(k)

), D(k)
C and the search direction d(k) = −H−1D

(k)
C

4 Inexact line search for j = 1, · · · , jmax, λ := βj until the following holds:

φ(p+ λd)− φ(p) ≤ αλ∇∆pk
φT (p)d(k)

5 p(k+1) ← p(k) + λd(k)

6 if line search successful then
7 Quasi-Newton update of the Hessian H with p(k+1) − p(k) and D

(k+1)
C −D

(k)
C

8 else
9 H ← I

10 Shrink the simplex
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3.4 Surrogate Optimization

In surrogate optimization methods, the (complex) objective is replaced with a simpler approximation that
maintains the key properties of the objective (e.g. a noisy measurement might be replaced by a simpler regres-
sion model). This surrogate function is then minimized and adjusted in order to find a good approximation of
the solution of the original problem (this can also be applied for constraint functions).
Requirements for the surrogate function φ̂ : Rnp → R: For all function evaluation (or “sampling”) points(
p(i), φ

(
p(i)
)), i = 1, · · · ,m it must hold that

φ
(
p(i)
)
= φ̂

(
p(i)
)
+ ϵ

where ϵ ∈ R is some “slack” constant that determines how exact the surrogate function shall be.

• For ϵ = 0, the problem is the same as interpolation.

• For ϵ > 0, the surrogate function does not perfectly reproduce the objective, but might be smoother.

Further requirements are that φ̂ should be fast to compute and the gradients of φ̂ should be available in closed
form.
This raises some questions:

1. φ might be too complex for a simple approximation =⇒ which approximation method should be used?

2. How to generate the data basis of the function evaluations? Generating all in one point will not yields
good results. . .

3. Which method is feasible to minimize φ̂?

3.4.1 Approximation Methods

Response Surface Methods (RSMs)

Response surface methods use simple polynomials of a low degree as the model function φ̂, e.g.:

• Degree one (linear): φ̂(p) = β0 + βT1 p

• Degree one with mixed terms: φ̂(p) = β0 + βT
1 p+

∑
i

∑
j

j ̸=i
βi,j2 pipj

• Degree two (quadratic): φ̂(p) = β0 + β1p+ pTβ2p

• Higher degree: . . .

The unknown parameters β1 ∈ R, β2 ∈ Rnp and β2 ∈ Rnp×np can be approximated using least squares:

min
β1,β2,β2

∑
i

(
φ
(
p(i)
)
− φ̂

(
p(i)
))

• Advantage: Simple and the approximations are easy to compute.

• Disadvantage: The RSMs cover only the global behavior and not local accuracy.
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Radial Basis Functions (RBFs)

Now the surrogate function φ̂ uses a linear combination of radial basis functions:

φ̂(p) =

m∑
i=1

γih
(∥∥p− p(i)

∥∥)
with basis function h(·) based only on the euclidean distance from the interpolation point, e.g.

• Linear: h(ri) = ri

• Cubic: h(ri) = r3i

• Thin-Plate: h(ri) = r2i log r

where ri =
∥∥p− p(i)

∥∥.
A suitable combination of RSM and RBF yield cubic spline-approximation:

φ̂(p) = β0 + β1p+
∑
i

γih(p), β1 ∈ R, β2 ∈ Rnp , γi ∈ R

• Univariate: h(p) = 1
12

∑
i r

3
i

• Bivariate: h(p) = 1
16π

∑
i r

2
i log ri

Design and Analysis of Computer Experiments (DACE)

Assuming the model function is a realization of a stochastic process

φ̂(p) = vT (p)β + Z(p)

where v(p) is a vector of basis functions (e.g. RSM, RBF) and Z(p) is a stationary random variable that is
Gaussian distributed with zero mean. The covariance between two points p(l) and p(k) is given as

Cov
[
Z
(
p(l)
)
, Z
(
p(k)

)]
= σ2R

(
p(l),p(k)

) with R
(
p(l),p(k)

)
=

np∏
i=1

e−θid
2
i , di =

∥∥p(l)
i − p

(k)
i

∥∥
2

Die unknown parameters β, θ and σ2 are then estimated using statistical estimators, e.g. maximum likelihood.

3.4.2 Select of the Sampling Points

Design of Experiments (DoE)

The classical strategy for selection sampling points, design of experiments is mainly designed for physical
experiments, not for deterministic ones! Typical approach:

• Classical selection
– orthogonal arrays
– latin hypercubes
– combinations
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• Metric-bases methods
– MiniMax: minimizing the maximal distance between the sampling points
– MaxiMin: maximizing the minimal distance

• Stochastic selection for Gaussian processes
– Entropy Design or D-Opt: maximizing the determinant of the covariance matrix
– A-Opt: depends on the trace of the covariance matrix
– G-Opt: minimize the maximum mean squared error

3.4.3 Minimizing the Surrogate Function

To successfully minimize the original objective function, the data basis of the surrogate function has to be
expanded sequentially. The following sections describe two methods for this, the Strawman and the Shoemaker
method.

Strawman

1. Calculate the current minimum of the surrogate function (e.g. using gradient descent).

2. Add the minimum of the surrogate function as a sampling point.

3. Calculate the new surrogate function. Repeat.

Shoemaker

1. Calculate the minimum with a minimal distance to all sampling points.

2. Extend the sampling points by this point.

3. Determine the new surrogate function. Repeat.

DACE-Based, Sequential Update Strategy

• The the expected mean error as a criteria for the quality of the surrogate function.

• Weigh small function values and uncertainties in the approximations.

• There exist different strategies following this basic idea.

• Termination criteria:
– Number of function evaluations
– No more improvements in the objective function
– φ(p) close to the minimal possible function value

• Sequential methods are better on normal computers, for parallel computers a special scheme should be
used.
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3.4.4 Discussion

• Independent of the approximation method, the surrogate function has to be minimized one or more
times per iteration (depending on the actual method).

• But the effort for the minimization is negligible as one simulation run for the evaluation of φ often takes
a lot longer.

• Every method of ?? can be used for minimizing φ̂ as the gradients are available by design.

• Advantages:
– φ̂ is given in closed form as well as the gradientd.
– Easy to compute, Newton-type methods applicable!
– “Smooth” surrogate function.

• Disadvantages:
– Approximation accuracy is limited.
– The number of sample points rises a lot for high-dimensional problems (curse of dimensionality).

3.5 Comparison

3.5.1 Magnetic Bearing Design

3.5.2 Walking Optimization of a Humanoid Robot

3.6 Discussion

• Advantages:
– Application is easy, no or little prior knowledge required.
– Robust toward discontinuities of φ or ∇φ.
– No calculation of gradients necessary.
– No need to start “close to” a solution.
– Some methods (e.g. evolutionary algorithms) are highly parallelizable, some are not (e.g. Nelder-

Mead).

• Disadvantages:
– Slow convergence, high number of steps needed and high computation time due to many φ-

evaluations.
– Inefficient for large np.
– Major difficulties for nonlinear constraints in p.
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4 Gradient-Based Optimization with Constraints

This chapter covers the optimization problems with nonlinear equality- and inequality-constraints:

min
p∈Rnp

φ(p)

subject to a(p) = 0, a : Rnp → Rna

b(p) ≥ 0, b : Rnp → Rnb

Such an optimization problem is called a nonlinear programming problem (NLP).

• A point p ∈ Rnp that fulfills the constraints is called a feasible point.

• The set of all feasibly points is called the feasible region.

• For a local minimum p∗ it holds that φ(p∗) ≤ φ(p) for all feasible points p in a neighborhood of p∗.

• All constraints that are active at a point p make up the active set. This set includes all equality constraints
and the active inequality constraints A(p) := { j ∈ N : 1 ≤ j ≤ nb, bj(p) = 0 }.

4.1 Solution Characterization

By a geometric view it is clear that the gradient of the active constraints must be parallel to the gradient of the
objective function, i.e. there has to be a constant µ∗i for each active constraint ai such that

∇φ(p∗) = µ∗i∇ai(p
∗) ⇐⇒ ∇φ(p∗)− µ∗i∇ai(p

∗) = 0

This leads directly leads to the definition of the Lagrangian

L(p,µ,σ) = φ(p)− µTa(p)− σTb(p)

with the Lagrange multiplier µ, σ which encodes the insight above.
For formulating the first-order optimality conditions analogous to the ones for unconstrained optimization

(see subsection 2.1.2), a constraint qualification must hold: The gradients

∇a1(p
∗), · · · ,∇anp(p

∗) and ∇bj(p
∗), j ∈ A(p∗)

of the active constraints have to linearly independent.
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4.1.1 First-Order Necessary Optimality Conditions (Karush-Kuhn-Tucker Conditions, KKT)

Let φ : Rnp → R, a : Rnp → Rna and b : Rnp → Rnb be continuously differentiable and let the constraint
qualification be fulfilled. If p is a feasible local minimum of the NLP, then there exist Lagrange multiplier
µ ∈ Rna , σ ∈ Rnb such that the Karush-Kuhn-Tucker conditions hold:

∇pL(p,µ,σ) = 0 (KKT.i)
µTa(p) = 0 (KKT.iia)
σTb(p) = 0 (KKT.iib)

σ ≥ 0 (KKT.iii)

Here, L(p,µ,σ) is the Lagrangian

L(p,µ,σ) := φ(p)− µTa(p)− σTb(p)

and the inequality in (KKT.iii) is element-wise.

4.1.2 Second-Order Necessary Optimality Conditions

The second-order necessary optimality condition is fulfilled if the first-order condition is fulfilled and the
Hessian of the Lagrangian has a positive curvature along the feasible directions:

zTHp
L(p,µ,σ)z ≥ 0

for all z ∈ Rnp \ {0} with (zT ·∇ai(p) = 0
)
i=1,··· ,na

, and (zT ·∇bj(p) = 0
)
j∈A(p)

4.1.3 Example

4.2 Simple Bounds, Box Constraints

The most common type of inequality-constraints are simple lower and upper bounds on the optimization
variables:

min
p∈Rnp

φ(p)

subject to pi,min ≤ pi ≤ pi,max

In practice, these are not only used in nearly all constrained, but also in unconstrained optimization problems
as they might increase the efficiency by constraining the search space. They also increase robustness of
optimization techniques that ensure the fulfilling of the constrains in every iteration.
Box constraints can also be used to prohibit “insecure values”, e.g. negative variables when the objective

function takes square roots.
For gradient-free methods, the constraints can be ensured by clipping the new iteration value to the bounds:

p
(k+1)
i = max

{
pi,min, min

{
pi,max, p

(k+1)
i

}}
For gradient-based methods, box constraints can be considered like every other linear and nonlinear constraint
(more on that later).

32



4.3 Penalty Function

The approach of penalty functions is to transform the constrained problem to an unconstrained problem
by punishing violations of the constraints. As this arises big problems with lots of and highly nonlinear
constraints, penalty functions are rarely used in practice anymore in favor of sequential quadratic programming
(see section 4.5).

As of today, penalty functions are mainly used for step size determination for nonlinear programs and in
the application of robust, gradient-free methods in the unconstrained optimization for solving NLPs.

4.3.1 Exterior Penalty Functions

The original nonlinear problem is replaced by an unconstrained problem with a penalty function Φ

min
p∈Rnp

Φ(p, ρ), Φ(p, ρ) = φ(p) + ρ
∑
j

πj(p), ρ ∈ R+

with a function πj per constraint that is positive if the constraint is violated and zero otherwise.
Often a series of unconstrained optimization problems Φ(p, ρ) is solved with an increasing ρ, such that the

solution p∗(ρ) gets pushed into the feasible region of the NLP step by step in in the hope of

lim
ρ→∞

p∗(ρ) = p∗

where p∗ is the real minimum.
This approach is called exterior penalty functions as the penalty term is only relevant if p violates the

according constraints.

Quadratic Penalty Function

The quadratic penalty function is the most common exterior penalty function:

ΦQ(p, ρ) = φ(p) + ρ · 1
2

(
na∑
k=1

(
ak(p)

)2
+

nb∑
jk=1

(
b̂k(p)

)2)

Here, b̂j(p) denotes the violation of the inequality constraints:

b̂j(p) =

{
0 iff bj(p) ≥ 0

−bj(p) iff bj(p) < 0
=
∣∣min{0, bj(p)}

∣∣
But in the case of ρ→∞, the Hessian of ΦC gets more and more ill-condition and may even be singular in

the limit.

Example
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4.3.2 Interior Penalty Functions

When using exterior penalty functions, it is not guaranteed that every solution of the iterating unconstrained
problems fulfills the constraints of the original NLP. Therefore, exterior penalty functions are not applicable if
fulfilling the constraints in every iteration is required. Interior penalty functions guarantee exactly that: Every
subproblem yields a feasible solution.

Given a NLP with only inequality constraints, interior penalty functions use barrier functions that have the
following properties:

• Value of infinity everywhere except inside the feasible region.

• Continuously differentiable inside the feasible region.

• The values go to +∞ as p gets closer to the edge of the feasible region.

Logarithmic Barrier Function

The logarithmic barrier function is the most used interior penalty function:

ΦB(p, r) = φ(p)− r
nb∑
k=1

ln bi(p)

The barrier parameter r > 0 will be decreased step by step and the solution should converge to the minimum
as r → 0.
But in the case of r → 0, the Hessian of ΦB gets more and more ill-condition and may even be singular in

the limit.

Example

4.3.3 Exact Penalty Functions

Neither the quadratic penalty function nor the logarithmic barrier function are “exact” penalty function so
that, with an appropriate ρ or respectively r, the solution of the unconstrained NLP yields the exact solution.
One important penalty function of this class is the exact ℓ1-penalty function:

Φℓ1(p, ρ) = φ(p) + ρ

na∑
k=1

∣∣ak(p)∣∣+ ρ

nb∑
k=1

∣∣min{0, bj(p)}
∣∣

However, the ℓ1-penalty function is not differentiable! This make the numerical solution difficult. But the
minimization yields, for adequate big ρ, the minimum of the NLP!

Example 1

Example 2
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4.3.4 Augmented Lagrangian

The downsides of exterior, interior and the ℓ1-penalty function can be avoided by not using the objective
directly, but by using the Lagrangian:

LQ(p,µ,σ, ρ) = φ(p)− µTa(p)− σTb(p) + ρ · 1
2

(
na∑
k=1

(
ak(p)

)2
+

nb∑
jk=1

(
min{0, bj(p)}

)2)

But this requires a good approximation of the Lagrange multiplier µ and σ.

Example 1

Example 2

Notes

• In practice, the augmented Lagrangian LQ is used in the following fashion:
1. Choose Lagrange multipliers µ, σ and the parameter ρ > 0.
2. Calculate a local minimum p∗(ρ) of LQ using methods of the unconstrained optimization.
3. Update the Lagrange multipliers and ρ. Repeat with 2.

• The update of the Lagrange multipliers according to µ(ρ) = −ρa
(
p∗(ρ)

) is based on the convergence
properties of the quadratic penalty function.

• If
– p∗ is a minimum of the NLP,
– the constraint qualification hold and
– the KKT-conditions and the second-order sufficient optimality condition is fulfilled for µ∗, σ∗,

then
– exists a threshold ρ̂ for which it holds that for all ρ ≥ ρ̂ it holds that
– p∗ is a strict local minimum of the (quadratic) augmented Lagrangian LQ(p,µ

∗,σ∗, ρ).

4.4 Constraint Elimination

For NLPs with active constraints it is often tempting to transform the NLP to remove some of the constraints
and to reduce the number of optimization variables (the degrees of freedom). But this might yields wrong
results! It has to be assured that:

• The original minimum is not eliminated.
• The nonlinearity of the problem is not increased too much (causing problems in finite difference

approximations of derivatives).
• No singularities arise in the transformed objective.
• No new discontinuities and non-differentiabilities are added to the objective.
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• The Hessian of the surrogate problem is not singular or ill-conditioned near the minimum.
• The transformed problem does not have additional local minima or stationary points.
• And a lot more.

In general: Keepmore constraints and keep the function as linear as possible instead of applying transformations
that behave badly.

Example 1

Example 2

Example 3

4.5 Sequential Quadratic Programming (SQP)

To take care of highly nonlinear equality and inequality constraints, information about the trajectory of these
have to be considered, i.e. gradient and Hessian information. Assuming that the constraints that are active on
the solution are known, the optimization problem is given as:

min
p∈Rnp

φ(p)

subject to a(p) = 0, a : Rnp → Rna

The KKT-conditions are then equivalent to the simpler formulation

∇L(p,µ) :=

[
∇pL(p,µ)
∇µL(p,µ)

]
=

[
∇φ(p)−

∑na
k=1 µk ·∇ak(p)
−a(p)

]
= 0

with the Lagrangian
L(p,µ) = φ(p)− µTa(p)

This yields a system of np + na nonlinear equations for np + na unknowns p, µ.
Taylor-expanding the gradient of the Lagrangian around (p(k),µ(k)

) yields
∇L(p∗,µ∗)

T
(
p(k),µ(k)

)
= ∇L

(
p(k),µ(k)

)
+HL

(
p(k),µ(k)

) [d(k)
p

d
(k)
µ

]
+ · · · !

= 0

with d
(k)
p := p∗ − p(k) and d

(k)
µ := µ∗ − µ(k). Cutting off the higher-order terms yields the Lagrange-Newton

method where the search direction d
(k)
p , d(k)

µ is given as the solution of

HL

(
p(k),µ(k)

) [d(k)
p

d
(k)
µ

]
= −∇L

(
p(k),µ(k)

) (4.1)

The Iteration equation k → k + 1 is analogous to the Newton method:[
p(k+1)

µ(k+1)

]
=

[
p(k)

µ(k)

]
+

[
d
(k)
p

d
(k)
µ

]
But there is one catch: The set of active constraints at the minimum is generally not known and can change in
every iteration.
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4.5.1 Finding the Search Direction

Further analysis of the linear system (4.1) with the Lagrangian
L(p,µ) = φ(p)− µTa(p)

yields that the linear system has the following structure:[
Hp

L

(
p(k),µ(k)

)
−Ja

(
p(k)

)
−JT

a

(
p(k)

)
0

][
d
(k)
p

d
(k)
µ

]
=

[
−∇φ

(
p(k)

)
+ Ja

(
p(k)

)
µ(k)

a
(
p(k)

) ]
Where Hp

L

(
p(k)

) is the Hessian of the Lagrangian w.r.t. p and Ja

(
p(k)

) is the Jacobian

Ja

(
p(k)

)
=


∂a1
∂p1

· · · ∂ana
∂p1... . . . ...

∂a1
∂pnp

· · · ∂ana
∂pnp


Note that this definition of the Jacobian differs from the usual definition! This one has the gradients of
the function has columns!
This linear system can be transformed to

[
Hp

L

(
p(k),µ(k)

)
−Ja

(
p(k)

)
−JT

a

(
p(k)

)
0

] d
(k)
p

d(k)
µ + µ(k)︸ ︷︷ ︸
µ(k+1)

 =

[
−∇φ

(
p(k)

)
a
(
p(k)

) ]

where d
(k)
p can be viewed as the solution of a quadratic minimization problem!

Quadratic Problem (QP)

The said quadratic problem is given as:

min
dp∈Rnp

φ
(
p(k)

)
+
(
∇φ

(
p(k)

))T
dp +

1

2
dT
pH

p
L

(
p(k),µ(k)

)
dp

subject to a
(
p(k)

)
+ JT

a

(
p(k)

)
dp = 0

Where the quadratic objective function of the QP consists of a quadratic Taylor-approximation of the NLP
objective plus a weighted curvature condition via the Hessian of the activate conditions:

Hp
L

(
p(k),µ(k)

)
= Hφ

(
p(k)

)
−

na∑
i=1

µTi Hai

(
p(k)

)
The linear constraints of the QP also consist of Taylor-approximations of the active NLP constraints.

Solving this quadratic optimization problem is more robust and possibly faster than solving the linear
system of equations. There exist special algorithms for solving QPs. But even though they are not active,
the inequality constraints must be fulfilled. Therefore, the QP is extended to also determine the Lagrange
multipliers µ(k), σ(k) along with the search direction d

(k)
p :

min
dp∈Rnp

φ
(
p(k)

)
+
(
∇φ

(
p(k)

))T
dp +

1

2
dT
pH

p
L

(
p(k),µ(k),σ(k)

)
dp

subject to a
(
p(k)

)
+ JT

a

(
p(k)

)
dp = 0

b
(
p(k)

)
+ JT

b

(
p(k)

)
dp ≥ 0

(4.2)
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Iteration step k → k + 1: p(k+1) = p(k) + d
(k)
p

Notes

• Similar to the Newton method, it can be shown under some assumptions that the SQP method converges
to a local minimum.

• Algorithms for solving general QPs can be used to determine the active constraints in each iteration by
solving the QP.
Even though it is not needed, it is useful for efficiency to use as much information as possible from the
last iteration (“hot start”).

• Other approaches determine the active constraints (working set) outside of the QP solution to only solve
QPs with equality constraints which is especially efficient.

4.5.2 Step Size Rules

If the initialization p(0) is “far” away from the minimum (or the QP is a bad, local approximation of the NLP),
the convergence can be improved by determining the optimal step size for

p(k+1) = p(k) + α(k)d(k)
p or respectively

[
p(k+1)

µ(k+1)

]
=

[
p(k)

µ(k)

]
+ α(k)

[
d
(k)
p

µ
(k+1)
QP − µ(k)

]

Common methods for determining the step size are

• the (quadratic) augmented Lagrangian LQ or

• the exact ℓ1-penalty function Φℓ1

with step size rules like the Armijo rule similar as in the unconstrained optimization (see section 2.3).

4.5.3 Approximation of the Lagrange Multipliers

If the approximation p(k) is far away from the NLP solution, it is not useful to use the Lagrange multipliers of
the QP for the NLP (as the linearization is only valid locally). Another method is to approximate the Lagrange
multipliers after calculating p(k+1) (i.e. solving the QP) using minimum least squares:

min
µ∈Rna

∥∥∥∥∇φ
(
p(k+1)

)
−

na∑
i=1

µ
(k+1)
i ·∇ai

(
p(k+1)

)∥∥∥∥2
2

or equivalently model the active inequality constraints explicitly:

min
µ∈Rna

∥∥∥∥∇φ
(
p(k+1)

)
−

na∑
i=1

µ
(k+1)
i ·∇ai

(
p(k+1)

)
−

∑
i∈A
(
p(k+1)

)σ(k+1)
i ·∇ai

(
p(k+1)

)∥∥∥∥2
2

Solving least squares problem will be discussed in detail in chapter 6.
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4.5.4 Termination Criteria

An obvious termination criteria would be to check whether the necessary KKT-conditions are sufficiently
fulfilled, i.a. ∇L(p,µ) ≈ 0.
The commonly used SQP method NPSOL terminates if all of the following criteria are fulfilled:

1. Old and new approximation do not change any more:

∥∥p(k+1) − p(k)
∥∥ = α(k) ·

∥∥d(k)
p

∥∥
2
≤ √εopt

(
1 +

∥∥p(k+1)
∥∥
2

)
2. Gradient of the objective function that is projected onto the active constraints vanishes:

∥∥∥ZT ·∇φ
(
p(k+1)

)∥∥∥
2
≤ √εopt

(
1 + max

{
1 +

∣∣φ(p(k+1)
)∣∣, ∥∥∇φ

(
p(k+1)

)∥∥
2
}
)

3. Constraints are sufficiently fulfilled:

∣∣ai(p(k+1)
)∣∣ ≤ εft, i = 1, · · · , na

bj
(
p(k+1)

)
≥ −εft, i = 1, · · · , nb

Where the constraints εopt, εft have to be chosen by the user.
In the more modern method SNOPT, all of the following two criteria have to be fulfilled:

maxi=1,··· ,np

{∣∣∣∣∂φ(p(k)
)

∂pi
−
∑na

j=1 µ
(k)
j ·

∂aj

(
p(k)
)

∂pi
−
∑

l∈A
(
p(k)
) σ(k)j ·

∂bl

(
p(k)
)

∂pi

∣∣∣∣}√∑na
j=1

(
µ
(k)
j

)2
+
∑

l∈A
(
p(k)
) (σ(k)j

)2 ≤ εopt

max
{∣∣aj(p(k)

)∣∣ : i = 1, · · · , np
}
∪
{∣∣min

{
0, bl

(
p(k)

)}∣∣ : l ∈ A(p(k)
)}∥∥p(k)

∥∥
2

≤ εft

A common criteria to detect failures is a maximum number of iterations kmax.

4.5.5 Hessian Approximation

The quadratic problem(4.2) needs the (np × np)-dimensional Hessian of the Lagrangian

Hp
L

(
p(k),µ(k),σ(k)

)
= Hφ

(
p(k)

)
−

na∑
i=1

µ
(k)
i Hai

(
p(k)

)
−

∑
i∈A
(
p(k)
)σ(k)i Hbi

(
p(k)

)

for (theoretical) quadratic convergence of the SQP method. But in practice, the second-order derivatives (the
Hessian) is often not available! Additionally it is assumed that the Hessian has a positive curvature (i.e. is
positive definite) along all feasible directions, which is fulfilled near a strict minimum. However, this cannot
be assumed in every iteration.
Hence, approximations/modifications of the Hessian are required.
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Naïve Approach: BFGS Approximation

It is tempting to use the BFGS update for the Hessian that is really successful in the unconstrained optimization.
The update rule is given as:

H̃(k+1) = H̃(k) − 1(
d(k)

)T
H̃(k)d(k)

H̃(k)d(k)
(
H̃(k)d(k)

)T
+

1(
g(k)

)T
d(k)

g(k)
(
g(k)

)T
g(k) = ∇pL

(
p(k+1),µ(k+1),σ(k+1)

)
−∇pL

(
p(k),µ(k+1),σ(k+1)

)
But it is not necessary that the full Hessian of the Lagrangian is positive definite! Additionally, it is very
inefficient to calculate the full Hessian if the NLP has lots of active constraints. Hence, the approximation has
to be modified in order to be useful for SQP methods.

Reduced Hessian

Every active constraints reduces the degrees of freedom by one Hence the degrees of freedom are the number
of optimization variables np minus the number of active and linearly independent constraints. In all of the
following it is assumed that it is known which constraints are active at the solution, yielding the following,
simpler, view of the NLP:

min
dp∈Rnp

φ
(
p(k)

)
+
(
∇φ

(
p(k)

))T
dp +

1

2
dT
pH

p
L

(
p(k),µ(k),σ(k)

)
dp

subject to a
(
p(k)

)
+ JT

a

(
p(k)

)
dp = 0 (4.3)

where the last Jacobian JT
a might also contain active inequality constraints which are left out here for brevity.

But they are handled the same as regular equality constraints and can be considered to be part of it knowing
which are active (as assumed). The degrees of freedom of this NLP are therefore np − na.

Assuming the current approximation p(k) fulfills the constraints, a(p(k)
)
= 0, the next approximation also

has to fulfill the constraints:

a
(
p(k) + dp

)
= 0

By Taylor-expanding this equation around p(k)

a
(
p(k) + dp

) T
(
p(k)
)

= a
(
p(k)

)
+ JT

a

(
p(k)

)
dp + · · · = 0

a linear system for the search direction dp can be found such that the new iteration is also feasible:

JT
a

(
p(k)

)
dp = 0

Thus, dp has to lie in the kernel of JT
a and the dimensionality of the kernel is np − na.

Hence, the kernel is spanned by np − na basis vectors (which are not uniquely determined). Let Z(k) be the
matrix that contains these basis vectors as columns, then

JT
a

(
p(k)

)
Z(k) = 0

holds and the search direction dp ∈ Rnp can be represented as

dp = Y (k)dy
p +Z(k)dz

p
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where Z(k) ∈ Rnp×(np−na) are the basis vectors of the kernel and Y (k) ∈ Rnp×na are the basis vectors of the
image space of JT

a

(
p(k)

). The vectors dy
p ∈ Rna and dz

p ∈ Rnp−na are unknown and have to be computed to
solve the QP. Plugging this formulation of dp into the constraints of (4.3):

0 = a
(
p(k)

)
+ JT

a

(
p(k)

)
dp

⇐⇒ −a
(
p(k)

)
= JT

a

(
p(k)

)
dp

= JT
a

(
p(k)

)(
Y (k)dy

p +Z(k)dz
p

)
= JT

a

(
p(k)

)
Y (k)dy

p + JT
a

(
p(k)

)
Z(k)︸ ︷︷ ︸

=0

dz
p

= JT
a

(
p(k)

)
Y (k)dy

p (4.4)

The vector dy
p is therefore determined by the active constraints via the linear system (4.4). Now there remain

np − na degrees of freedom for the actual optimization.
Plugging the formulation of dp into the objective of the QP1

φ
(
p(k)

)
+
(
∇φ

(
p(k)

))T
dp +

1

2
dT
pH

p
Ldp

=φ
(
p(k)

)
+
(
∇φ

(
p(k)

))T (
Y (k)dy

p +Z(k)dz
p

)
+

1

2

(
Y (k)dy

p +Z(k)dz
p

)T
Hp

L

(
Y (k)dy

p +Z(k)dz
p

)
yields the following objective when leaving out all constant parts w.r.t. dz

p, as that is the optimization variable:

φ
(
p(k)

)
+
(
∇φ

(
p(k)

))T
Z(k)dz

p +
(
dy
p

)T (
Z(k))THp

L

(
Z(k)dz

p

)
+

1

2

(
dz
p

)T (
Z(k))THp

LZ
(k)dz

p

The solution of this optimization problem can be computed by solving the following linear system (if the
reduced Hessian is positive definite, which it is close to a strict local minimum):((

Z(k)
)T

H
(k)
L Z(k)

)
dz
p = −

(
Z(k)

)T
H

(k)
L Y (k)dy

p −
(
Z(k)

)T ·∇φ
(
p(k)

)
Summary Using the representation dp = Y (k)dy

p+Z(k)dz
p, the search direction as the solution of the QP (4.3)

can be computed by solving two staggered linear systems:

JT
a

(
p(k)

)
Y (k)dy

p = −a
(
p(k)

)((
Z(k)

)T
H

(k)
L Z(k)

)
dz
p = −

(
Z(k)

)T
H

(k)
L Y (k)dy

p −
(
Z(k)

)T ·∇φ
(
p(k)

)
• If a(p(k)

)
= 0, i.e. the constraints are linear, dy

p = 0.

• If additionally (Z(k)
)T ·∇φ

(
p(k)

)
= 0, then dz

p = 0.

First- and Second-Order Conditions Using the matrix Z some of the necessary and sufficient conditions can
be formulated equivalent:

• First-order necessary condition:

1Note that the parameters of the Hessian are kept implicitly for brevity.
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∇φ(p∗)−
na∑
i=1

µi ·∇ai(p
∗)−

∑
i∈A(p∗)

= 0 ⇐⇒ ZT (p∗) ·∇φ(p∗) = 0

• Second-order necessary condition:
The reduced Hessian of the Lagrangian ZT (p∗) ·Hp

L(p
∗,µ∗,σ∗) ·Z(p∗) is positive semidefinite.

• Second-order sufficient condition:
The reduced Hessian of the Lagrangian is positive definite.

Example

Approximation of the Reduced Hessian

The reduced Hessian contains all information that is needed to compute the QP solution! Hence, SQP methods
can be built on this reduced Hessian. A Quasi-Newton approximation, e.g. BFGS, can be used to update the
reduced Hessian:

H̃(k+1) = H̃(k) − 1(
d(k)

)T
H̃(k)d(k)

H̃(k)d(k)
(
H̃(k)d(k)

)T
+

1(
g(k)

)T
d(k)

g(k)
(
g(k)

)T
d(k) = dz

p

g(k) =
(
Z(k+1)

)T ·∇pL
(
p(k+1),µ(k+1),σ(k+1)

)
−
(
Z(k)

)T ·∇pL
(
p(k),µ(k+1),σ(k+1)

)
Analogous to unconstrained optimization, it is helpful to replace the rank-2 update with a rank-1 update

and directly approximate a Cholesky decomposition.

4.5.6 SQP Method (Algorithm)

A sketch of the implementation of an SQP method is given in algorithm 6.

4.5.7 Notes

• When using the reduced Hessian, the matrix Z(k) has to be updated in every iteration.

• Especially for high-dimensional problems, the gradients and Jacobians are sparse, i.e. only a few entries
are nonzero. This behavior can be exploited in order to optimize implementations a lot.

• To rise efficiency and robustness further, sophisticated implementations of SQP methods (e.g. NPSOL,
SNOPT) differentiate between constraints like

– upper and lower bounds
– linear constraints
– nonlinear constraints
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Algorithm 6: Sequential Quadratic Programming
1 Initialization: Choose an initial approximation p(0), set k ← 0
2 while not converged do
3 Calculate the Lagrange multipliers µ(k), σ(k) using least squares:

min
µ∈Rna

∥∥∥∥∇φ
(
p(k+1)

)
−

na∑
i=1

µ
(k+1)
i ·∇ai

(
p(k+1)

)
−

∑
i∈A
(
p(k+1)

)σ(k+1)
i ·∇ai

(
p(k+1)

)∥∥∥∥2
2

4 if termination criteria fulfilled then
5 return

6 Calculate new search direction d
(k)
p by solving the quadratic problem:

min
dp∈Rnp

φ
(
p(k)

)
+
(
∇φ

(
p(k)

))T
dp +

1

2
dT
pH

p
L

(
p(k),µ(k),σ(k)

)
dp

subject to a
(
p(k)

)
+ JT

a

(
p(k)

)
dp = 0

b
(
p(k)

)
+ JT

b

(
p(k)

)
dp ≥ 0

7 Calculate the step size α(k) using by minimizing a merit function, e.g. the augmented Lagrangian

min
α∈R+

LQ

(
p(k) + αd(k)

p , µ(k) + αd(k)
µ , σ(k) + αd(k)

σ , ρ(k)
)

or the exact ℓ1-penalty function minα∈R+ Φℓ1

(
p(k) + αd

(k)
p , ρ(k)

)
8 Calculate the new solution approximation:

p(k+1) ← p(k) + α(k)d(k)
p
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4.5.8 Examples

Optimal Control of a 6-DoF Industry Robot

Car Drive

4.5.9 Wrap-Up
• Motivation:

– The Newton method is applied to determine a root (“zero point”) of the gradient of the Lagrangian.
– This yields a linear equation system to determine a search direction.
– Requires first- and second-order derivatives of the objective and the constraints.
– Preliminaries for the derivative where differentiability and knowing which constraints are active.

• Basic structure:
– The linear system derived as a first step is equivalent to the solution of a quadratic problem (QP).
– Solving the QP is faster and more robust than solving the linear system directly.
– This yields a sequence of quadratic problems, thus sequential quadratic programming (SQP).

• Improvement of the basic structure:
– For globalizing the method, a step size determination was introduced using line search on an

appropriate test function (penalty function).
– As the second-order derivatives are commonly not available, Quasi-Newton approximations of the

Lagrangian are used.

• SQP for high-dimensional NLPs:
– If the NLP is high-dimensional, the reduced Hessian shall be used.
– The QP can be solved faster and the Hessian of the Lagrangian can be approximation using
Quasi-Newton approaches!

– High-dimensional NLPs often have sparse gradients as Jacobians which can be used for further
performance improvements.

• Outlook:
– There are lots of SQP methods, e.g. trust-region SQP that can work with indefinite or negative

definite Hessians or methods that allow only feasible approximations in every iteration (feasible SQP
methods), while the “classic” SQP only fulfills the constraints at the end (infeasible SQP method).

– Other numerical methods for solving nonlinear, constrained optimization problems exist, e.g. inner
point methods.
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5 Calculation of Derivatives

To use efficient gradient-based algorithms, the first-order derivatives
∂φ

∂pi

∂ak
∂pi

∂bl
∂pi

of the objective and the constraints are needed. But these are typically not available directly! And even one
wrong derivative could destroy the fast convergence properties. . .

5.1 Finite Difference Approximation (numerical Differentiation)

5.1.1 Forward Difference Approximation

The most known approximation of the first derivative is the forward difference approximation

∂φ(p)

∂pi
≈ DV,iφ(p) =

1

δi

(
φ(p+ eiδi)− φ(p)

)
where ei ∈ Rnp is the i-th unit vector and δi is an appropriate step size. The complete error is:

Error

The complete error of the approximation is composed of the following:
• Approximation error (theoretical error)
• Function precision
• Rounding error

Approximation Error The (theoretical) approximation error is given as the neglected terms of the Taylor
approximation (i.e. the Lagrangian remainder):

φ(p+ eiδi)
T (p)
= φ(p) +

∂φ(p)

∂pi
δi +

1

2

∂2φ(p̃)

∂p2i
δ2i , p̃ ∈ [p,p+ eiδi]

⇐⇒ φ(p+ eiδi)− φ(p)−
∂φ(p)

∂pi
δi =

1

2

∂2φ(p̃)

∂p2i
δ2i

⇐⇒ 1

δi

(
φ(p+ eiδi)− φ(p)

)
︸ ︷︷ ︸

=DV,iφ(p)

−∂φ(p)
∂pi

=
1

2

∂2φ(p̃)

∂p2i
δi

⇐⇒ DV,iφ(p)−
∂φ(p)

∂pi
=

1

2

∂2φ(p̃)

∂p2i
δi =: TV,i(φ; δi)
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In theory, the error should decrease with the step size. But today’s computers have finite arithmetic! Other
error factors have a serious role demolishing this theoretical result.

Function Precision The function precision takes into account that the target function φ cannot be calculated
with machine precision, e.g. because the evaluation depends on other methods or because rounding errors
have summed up due to cancellation or ill-conditioning.
This can be taken into account with the absolute errors ε, εδi of the function evaluations:

φ̂(p) = φ(p) + ε φ̂(p+ eiδi) = φ(p+ eiδi) + εδi

Where the absolute error can be expressed in terms of a relative error εR = 10−nd as ε = εRφ(p) where nd are
the number of decimal places that are correct. Plugging φ̂ into the forward approximation yields the function
precision error C(DV,iφ; δi):

DV,iφ̂(p) =
1

δi

(
φ̂(p+ eiδi)− φ̂(p)

)
=

1

δi

(
φ(p+ eiδi)− φ(p)

)
+
εδi − ε
δi

=: DV,iφ(p) + C(DV,iφ; δi)

Rounding Error Additionally to the function precision and the theoretical error, rounding errors are produced
by the subtraction and the division. But if δi does not get “too small”, these are negligible compared to the
approximation error and the function precision.

Total Error Hence, the total error is given as:

TV,i(φ; δi) + C(DV,iφ; δi) =
1

2

∂2φ(p̃)

∂p2i
δi +

εδi − ε
δi

(5.1)

Choosing the Step Size

Ideally, the step size should be chooses such that the error is minimal. As the error term (5.1) contains
second-order derivatives that are not available, an upper bound has to be drawn on the error that more or less
independent of the derivatives:∣∣∣∣∣12 ∂2φ(p̃)∂p2i

δi +
εδi − ε
δi

∣∣∣∣∣ ≤ 1

2
δi

∣∣∣∣∣∂2φ(p̃)∂p2i

∣∣∣∣∣+ 1

δi

∣∣εδi − ε∣∣ ≤ 1

2
δiLφ′′,i +

2

δi
εRLφ

Lφ′′,i := max

{∣∣∣∣∣∂2φ(p̃)∂p2i

∣∣∣∣∣ : p̃ ∈ [p,p+ eiδi]

}
Lφ := max

{ ∣∣φ(p)∣∣, ∣∣φ(p+ eiδi)
∣∣ }

Minimizing this w.r.r. to the step size yields:

min
δi∈R+

Φ(δi), Φ(δi) =
1

2
δiLφ′′,i +

2

δi
εRLφ

=⇒ Φ′(δi) =
1

2
Lφ′′,i −

2

δ2i
εLφ

!
= 0

Lφ′′,i ̸=0
⇐⇒ δi =

√
4εRLφ

Lφ′′,i
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If Lφ/Lφ′′,i ≈, then δi ≈ 2
√
εR. If additionally it is possible to evaluate the function with machine precision,

i.e. εR = εmach, the optimal step size is simply

δi ≈ 2
√
εmach

This step size often is a good choice and thus set as the default in most implementations. It also explains the
rule of thumb that forward-differences can approximately evaluate half of decimal places correctly.

Notes

• For evaluating the gradient ∇φ(p) it is necessary to
– Determine np step sized δi and to evaluate φ at least 2np times to approximate Lφ′′,i.
– Every iteration of a gradient-based method needs the gradients causing high computation times.
– It is better to use a one-time approximation of relative step sizes εi with δi = εi

(
1 + |pi|

) at the
initialization p(0).

– The value εi = 5
√
εmach can be used as an initial relative step size.

– If the optimization fails, restart with a new initialization and re-calculate the step sizes.

5.1.2 Central-Difference Approximation

For forward difference approximation often yields results that are good enough, except the gradients are too
small. Additionally, the forward approximation is not sufficient if the optimization step size α(k) such that the
changes in p are less than the step size δ or the differences in the function values are “too small” relative to δ.
A potentially more exact approximation are central differences:

∂φ(p)

∂pi
≈ DZ,iφ(p) =

1

2δi

(
φ(p+ eiδi)− φ(p− eiδi)

)
Analogous to the forward differences, Taylor-expand this formula yields the insight that the order of the
approximation error is O(δ2i ) while the order of the forward differences is O(δi). Analogous to the forward
differences, the optimal step size δZi can be calculated by minimizing an upper bound on the total error,
yielding the optimal step size

δZi = 3

√
3εRLφ

Lφ′′′,i
, Lφ′′′,i = max

{∣∣∣∣∣∂3φ(p̃)∂p3i

∣∣∣∣∣ : p̃ ∈ [p− eiδ
Z
i ,p+ eiδ

Z
i

]}

For functions with Lφ/Lφ′′′,i ≈ 1 it follows δZi ≈ 3
√
3εR ≈ δ

2/3
i . If additionally Lφ ≈ 1 and Lφ′′′,i ≈ 1, it

follows: ∣∣∣∣∣DZ,iφ̂(p)−
∂φ(p)

∂pi

∣∣∣∣∣ ≤ ε2/3R

Hence, the rule of thumb that central difference can approximately evaluate two third of decimal places
correctly.
But central differences produce much more computational overhead compared to forward/backward

differences! Thus they should only be used if needed (by switching from forward to central differences).
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To approximate the second derivative, the following schema can be used
∂2φ(p)

∂p2i
≈ 1

δ2i

(
φ(p+ eiδi)− 2φ(p) + φ(p− eiδi)

)
that is a combination of forward and backward differences to approximate the second-order derivative. This
directly gives the i-th diagonal entry of the Hessian of φ, which can reduce the number of iterations needed.

5.2 Numerical Differentiation of Simulation Models

An important class in optimization is simulation-based optimization where the system state x(t) is given as the
numerical solution of ODEs or PDEs. In this setting, the objective φ and the constraints a, b are dependent on
the state variables x of an ODE/PDE system. Hence, the calculation of φ(x(p)) requires solving the ODE/PDE
numerically:

• Every calculation of φ(x(p)), a and b is computationally expensive.
• The calculation is only possible with simulation errors (i.e. approximation error in the ODE/PDE solver

and accumulated rounding errors).
• The gradients (see below) are generally not available and have to me approximated.

∇φ
(
x(p)

)
=
∂φ
(
x(p)

)
∂p

=
∂φ

∂x

∂x

∂p

5.2.1 Derivative of ODE-Simulation Models

Given an IVP (initial value problem) ẋ = f(t,x;p), x(0) = x0, 0 ≤ t ≤ tf , the derivatives of the (numerical)
solution x(t;p) w.r.t. to the parameters p are required. Formally, the parameters p can be transformed to
initial values x0 and thus the derivatives w.r.t. the parameters to derivatives w.r.t. the initial values. The
derivative w.r.t. the initial values is called the sensitivity matrix:

∂x(t;x0)

∂x0

The IVP with the parameters p transformed to initial values is given as ẋ1...
ẋnx

 = ẋ = f(t,x, xnx+1, · · · , xnx+np)

 ẋnx+1
...

ẋnx+np

 =

0...
0


with xnx+1 := p1, · · ·, xnx+np

:= pnp and the initial values

x(0) = x0

 xnx+1(0)
...

xnx+np(0)

 =

 p1...
pnp


That is, the “parameter states” are added as time invariant states always equaling the parameters.
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5.2.2 External Numerical Differentiation

Naïve Approach

Just use forward differences:
∂x(t;p)

∂pi
≈ 1

δi

(
x(t;p+ eiδi)− x(t;p)

)
• This approach requires solving np additional IVP solutions for calculating the tweaked evaluations.

• To solve the IVP as best as possible, it may use variable step sizes.

• This causes gradient-based algorithms to have extremely big problems in finding the minimum!

• But this is not only caused by the optimization method. . .

Runge-Kutta Methods When using Runge-Kutta methods of order m, the numerical solutions depends on
the integration tolerance and the internal step width of the integration. By just looking at the initial values,
the error of RK methods of order m is

x̃(t;x0, h1) = x(t;x0) +

N∑
j=m

c̃j(t,x0)h
j
1 +O

(
hN+1
1

)
x̃(t;x0 + eiδi, h2) = x(t;x0 + eiδi) +

N∑
j=m

c̃j(t,x0 + eiδi)h
j
2 +O

(
hN+1
2

)
with differentiable functions c̃j(t,x0). Plugging this into the forward difference scheme yields:

1

δi

(
x̃(t;x0 + eiδi, h2)− x̃(t;x0, h1)

)
=
∂x(t;x0)

∂x0,i
+O(δi) +

N∑
j=m

c̃j(t,x0 + eiδi) ·
hj2 − h

j
1

δi︸ ︷︷ ︸
→∞

+

N∑
j=m

(
∂c̃j(t,x0)

∂x0,i
+O(δi)

)
hj1 +O

(
hN+1
1

δi

)
+O

(
hN+1
2

δi

)

This is the problem! If the integration steps h1 ̸= h2 are not equal, the error term becomes dominant as δi
usually is “small”.
A “solution” would be to set h1 = h2, causing bad integration results.

Coupled Forward Differences Approximation

It is possible to simultaneously integrate an (np + 1)-times big IVP for each tweaked value guaranteeing
h1 = h2:

ẋ = f(t,x), x(0) = x0

ẋ = f(t,x)

...
ẋ = f(t,x)
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5.2.3 Internal Numerical Differentiation

The external numerical differentiation costs a lot of time! One insight: The sensitivity matrix can be expresses
as the solution of a matrix-ODE:

d

dt

∂x(t;x0)

∂x0
=
∂f
(
t,x(t;x0)

)
∂x

∂x(t;x0)

∂x0
,

∂x(0;x0)

∂x0
= I

• Variant 1: Simultaneously integrate the ODE and the matrix-ODE with a standard integrator.

• Variant 2 (better): Differentiated integrate method calculates x(t;p), ∂x(t;p)
∂p , ∂ẋ(t;p)

∂p

– Advantage: Really efficient.
– Disadvantage: Implementation complexity; especially complication for switching points.

5.3 Symbol Differentiation

If the functions φ, a, b are given as explicit formulas, the derivatives ∇φ(p), Ja(p), Jb(p) could be evaluated
using a computer algebra system (e.g. Maple, Mathematica, SymPy, . . . ) in closed form. This is based on a
systematic application of chain, product, . . . rules and often requires a special input format.

• Advantage: No approximation error, only rounding errors.

• Disadvantages: Can lead to complex functions that are computationally expensive to evaluate.

5.4 Automatic Differentiation

Automatic differentiation refers to a technique to generate first and possible second-order derivatives of an
existing program that calculates φ, a, b. This is based on the insight that every every so complex function can
be composed of as a sequence of elementary functions with one or two arguments:

• 1-argument functions: Sine, Cosine, Exponential, Logarithm, . . .

• 2-argument functions: Addition, Subtraction, Multiplication, Division, Exponentiation

AD-methods are based on an analysis of the evaluation sequence as a computation graph of elementary
functions.
There are two main design decisions:

• Pre-compile a program to get the derivative function to be able to evaluation the function and the
derivatives simultaneously (forward mode).

• Build the computation graph after the function has been evaluated and evaluate the derivative afterwards
(backward mode).

The computational complexity of the gradient in forward mode on a scalar function with multiply variables
φ(p) can be as high as for symbolic differentiation: O(np. But for the backward mode, a complexity of O(5)
can be reached independent of np! But the memory complexity can rise a lot. . .

• Advantages:
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– No approximation error, only rounding errors.
– AD is continuously improving and even today’s algorithms are capable of a lot of calculations.

• Disadvantages:
– It is problematic to handle piecewise functions (if-then-else), approximation of tabular data,
approximations of Sine, Cosine, . . . by rationale functions.
But this is problematic even for analytical derivatives. . .

Even ODE- and PDE-simulations can be handled using AD!
Popular implementations, commonly used in machine learning, are libraries like TensorFlow (static compu-

tation graph) and PyTorch (dynamic computation graph).
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6 Parameter Estimation

This chapter covers a special type of objective function: the sum of squares, called least squares optimization
problems:

φ(p) =
1

2

nr∑
i=1

r2i (p) =
1

2
∥r(p)∥22

This objective function arises in a lot of optimization problems, e.g.: Given some detected corner points
(xi, yi)i=1,··· ,nr of a ball, what is the radius RK and the position (xK , yK) if the ball? The residual (error)
function r can be determined from the circle equation:

R2
K = (xi − xK)2 + (yi − yK)2 =⇒ ri(xK , yK , RK) =

√
(xi − xK)2 + (yi − yK)2 −RK

If, in practice, some parametric model is used, this almost always leads to a parameter fitting problem to
measure/minimize the differences between the model and measurements. By minimizing the differences, the
model with that most correspond to the measurements can be found (e.g. the parameters of a friction model
or inertia of a robot).

6.1 Objective Functions

There are various different objective functions that could be used:

• Absolute sum: φ1(p) = ∥r(p)∥1 =
∑nr

i=1|ri(p)|

• Sum of squares: φ2(p) =
1
2∥r(p)∥

2
2 =

1
2

∑nr
i=1 r

2
i (p)

• Maximum difference: φ∞(p) = ∥r(p)∥∞ = max
{
|ri(p)| : i = 1, · · ·, nr

}
But even if r is differentiable, φ1 and φ∞ are generally not. But φ∞ can be transformed into a NLP with
differentiable functions:

min
p,pnr+1

pnr+1

subject to − pnr+1 ≤ ri(p) ≤ pnr+1, i = 1, · · ·, nr

Anyway, φ∞ is extremely sensitive towards outliers. On the other hand, φ2 is less sensitive towards outliers
and is differentiable (if r is differentiable)!

Hence, in most cases the least squares objective φ2 is used. Besides the differentiability, it is also statistically
appealing: If the measurement noise εij are statistically independent and Gaussian distributed with mean 0
and variance σ2, the solution of φ2 → min is a maximum likelihood estimator!

Additionally, by exploiting the structure of φ2, the efficiency of gradient-based algorithms can be increased
(e.g. due to sparse Jacobians).
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6.2 Linear Least Squares

In the special case of a linear residual function r(p) = JTp+ f and the least squares objective

φ(p) = φ2(p) =
1

2
∥r(p)∥22

the optimization problem is quadratic in p:

φ(p) =
1

2

∥∥JTp+ fr
∥∥ =

1

2

(
pTJ + fT

r

)(
JTp+ fr

)
Zeroing the gradient ∇φ(p)

!
= 0 yields the normal equations

JJTp∗ = −Jfr

that a solution must fulfill (where JJT is symmetric and positive definite). This linear system should not be
solved as a normal linear system as it is ill-conditioned! Better use special methods like orthogonalization or
single value decomposition.

6.3 Optimality Conditions and Special Methods

Let φ(p) = φ2(p) be two times continuously differentiable. Then the following first- and second-order
necessary conditions can be formulated:

1. The gradient has to vanish:

∇φ2(p
∗) = Jr(p

∗) · r(p∗) = 0

2. The Hessian has to be positive semidefinite:

Hφ2(p
∗) = Jr(p

∗)JT
r (p

∗) +

nr∑
i=1

(
ri(p

∗) ·Hri(p
∗)
) (6.1)

6.3.1 Gauss-Quasi-Newton Method

In the Quasi-Newton method, the search direction is determined as a solution of the linear system

Hφ

(
p(k)

)
d(k) = −∇φ

(
p(k)

)
where the Hessian is approximated, e.g. using a BFGS update. But in the case of a least squares optimization
problem, the only part of the Hessian (6.1) depending on second-order derivatives is:

nr∑
i=1

(
ri(p

∗) ·Hri(p
∗)
)

But as the objective gets smaller and smaller, this term also vanishes. Hence, the Hessian can be approximated
using first-order derivatives only

Hφ2(p
∗) ≈ Jr(p

∗)JT
r (p

∗)
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if the residuals are “small”. This leads to the Gauss-Newton Method where the search direction is given as the
solution of the normal equations

Jr

(
p(k)

)
JT
r

(
p(k)

)
d(k) = −Jr

(
p(k)

)
· r
(
p(k)

)
or as the solution of a (better conditioned) linear least squares problem:

min
d∈Rnp

1

2

∥∥∥JT
r

(
p(k)

)
d+ r

(
p(k)

)∥∥∥2
2

If residuals are big or the problem is ill-conditioned, it can be modified with a suitable matrix B(k):(
Jr

(
p(k)

)
JT
r

(
p(k)

)
+B(k)

)
d(k) = −Jr

(
p(k)

)
· r
(
p(k)

)
Additionally a step size rule should be used. This method is implemented, e.g. in NLSCON which also allows

additional nonlinear inequality constraints.

6.3.2 Levenberg-Marquardt Methods

Instead of a Newton-approach, trust region methods can be used to determine the search direction. In the
Levenberg-Marquardt Method, the search direction d(k) is given as the solution of:(

Jr

(
p(k)

)
JT
r

(
p(k)

)
+ γ(k)I

)
d(k) = −Jr

(
p(k)

)
· r
(
p(k)

)
, γ(k) ≥ 0

That is, the search direction is a mixture of the Gauss-Newton direction and steepest descent. The same search
direction can be received by solving a constrained linear least squares problem:

min
d∈Rnp

1

2

∥∥∥JT
r

(
p(k)

)
d+ r

(
p(k)

)∥∥∥2
2

subject to |d∥2 ≤ δ(k)

Where δ and γ have a connection.
This is implemented, e.g. in LMDER, LMJAC of MINPACK.

6.3.3 Notes

• The Gauss-Newton method needs an appropriate test function that also exploits the structure of the
objective function to determine the step size to ensure global convergence.

• In the Levenberg-Marquardt method, globalization happens by choosing an appropriate trust region.

• Levenberg-Marquardt and Gauss-Newton methods are in general a lot more efficient (faster and more
precise) than solving least squares problems using general purpose optimization techniques (e.g. Quasi-
Newton or SQP).

• When optimization by simulation, the sensitivity matrix ∂x(t;p)
∂p is needed (seesubsection 5.2.1).
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6.4 Conditioning of Normal Equations

Often, the Jacobian of the objective function of linear least squares J is ill-conditioned, i.e. condJ is high,
causing round error to be increased. In extreme cases, J does not has full rank, i.e. condJ =∞. In this case,
the solution d of the normal equations

JJTd = −Jr

is not unique! Common reasons for ill-conditioning are:

• “too few” measurements
E.g. the measurements are not “dense enough”.

• not the “correct” measurements
E.g. the measurements to not depend or weakly depend on the optimization variables.

• System model does not fit to the measurements (it is incompatible). Then either the measurements or
the model is wrong.

6.5 Result Interpretation

6.5.1 Common Problems

Common problems if the residuals are still high after the optimization terminates:

• Derivatives are not precise enough.

• The optimization method is not suitable for the problem, e.g. if the method cannot handle inexact
function evaluations or has problems with local minima of φ2.

• In parameter estimation settings,
– the system model and measurements might be incompatible (wrong measurements) or
– the system model and the physical might be incompatible (wrong model).

Common problems for small residuals:

• Some optimization variables might not be uniquely determined.

• Too less measurements, variables are not unique in general (e.g. linearly dependent in the model).

Practical aspects:

• Scaling/balancing of the variables: By the transformation pi → p̂i = sipi, si = const > 0, the derivative
changes to ∂φ

∂p̂i
= ∂φ

∂pi
1
si
.

• Scaling of the residuals by weights wi > 0: φ(p) = 1
2

∑nr
i=1wir

2
i (p)
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6.5.2 The Covariance Matrix

Assuming the measurement errors εi (in the measurements ri) are normally distributed with zero mean and
constant variance σ2. Then the solution of the linear least squares problem is a maximum likelihood estimator
for the parameters! The covariance matrix V is then given by V = σ2

(
JJT

)−1 where the variance can be
approximated by

σ2 ≈ ∥r(p
∗)∥2

nr − np

and the mean of the residual squares is given as

E
[
∥r(p∗)∥2

]
= (nr − np)σ2

Hence, a bad conditioning of J implies high variance!

6.6 Optimal Experimental Design

Goal of optimal experimental design is a good conditioning of the parameter identification problem, i.e. the
optimal experimental parameters s∗ is a solution of the optimization problem

min
s
ϕexp

(
V (s)

)
where V is the covariance matrix. Some objective ϕexp are:

1. Determinant of V .

2. Trace mean, i.e. trV /np
3. Biggest eigenvalue of V

4. Absolute length of the biggest confidence interval.

5. Conditional number.

6.7 Examples

6.7.1 Parameter-Dependent Vehicle Dynamics

Simulated Measurements

Real Measurements

Comparison

6.7.2 Parameter Estimation for “BioBiped”
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7 Minimization of Functionals

In the setting of variational problems, the unknown x is a function of t (where t is the independent variable)
and the objective is a functional J [x] of integral type:

J [x] =

∫
L
(
x(t), ẋ(t), t

)
dt

the solution x∗ must fulfill given constraints, e.g.:
• Initial and end conditions (boundary conditions)
• Inequality constraints
• Integral-type constraints
• Differential equations

If differential equations are given, the problem is called an optimal control problem.

7.1 Euler-Lagrange Equation

Given an optimization problem

min
x
J [x], J [x] =

∫ b

a
L
(
x(t), ẋ, t

)
dt

subject to
x(a) = xa

x(b) = xb

where x : R→ Rnx , L : Rnx × Rnx ×R→ R are two times continuously differentiable.
A stationary solution x∗, i.e. a solution that is a minimum candidate, has to fulfill the Euler-Lagrange

Equation:
∂L

∂xi
− d

dt

∂L

∂ẋi
= 0, i = 1, · · ·, nx

Additionally, the boundary conditions x(a) = xa, x(b) = xb must be fulfilled, yielding a second-order ordinary
boundary value problem.

7.1.1 Example

As of the Hamilton’s principle x(t) between t1 and t2 is a stationary point of the action functional∫ t2

t1

L
(
x(t), ẋ(t), t

)
dt

57



where L is the Lagrangian of the system, i.e. the difference of kinetic and potential energy:

L = T − V

For a ball with mass m and gravity acceleration g that is thrown into the air in a straight line (i.e. one-
dimensional), the kinetic and potential energy are given as:

T =
m

2
ẋ2 V = mgx

The Lagrangian then is L = T − V = m
2 ẋ

2 −mgx. Plugging that in the Euler-Lagrange equations yields a
second-order differential equation for the movement of the ball:

∂L

∂x
= −mg ∂L

∂ẋ
= mx

d

dt

∂L

∂ẋ
= mẍ =⇒ −mg −mẍ = 0 ⇐⇒ ẍ = −g

Solving this differential equation with the initial values x(0) = 0, ẋ(0) = ẋ0 yields the equation of movement
of the ball:

x(t) = −g
2
t2 + ẋ0t

As expected, this equation is a perfect parabola w.r.t. time! The same can be done in two dimensions.

7.1.2 Notes

• The Euler-Lagrange equations are in general not tractable. Hence, numerical methods have to be used.

• The equations can be extended to solutions with non-differentiabilities, (in-) equality constraints,
integral-type constraints, . . .

• Also, second-order necessary conditions can be formulated.

7.1.3 Derivation
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8 Optimal Control

A dynamical system is described by the ODE

ẋ = f(x,u,p, z), x(0) = x0

where x is the state, u are the control variables, p are (constant) system parameters and z is noise. An optimal
control problem has given x0, p and xi(tf ) and seeks for an optimal u and x.

A complete optimal control problem is given as:

min J [u], J [u] = ϕ
(
x(tf ), tf

)
+

∫ tf

0
L
(
x(t),u(t)

)
dt

subject to ẋ(t) = f
(
x(t),u(t)

)
xi(0) = xi,0 = const, i ∈ { 1, · · ·, nx }

r
(
x(tf ), tf

)
= 0, e.g. xj(tf ) = xj,f , j ∈ { 1, · · ·, nx }

g
(
x(t),u(t)

)
≥ 0

g
(
x(t)

)
≥ 0

ri
(
x(ts − 0),x(ts + 0), ts

)
= 0

The constraints (from to bottom) are called:
• Equations of movement, these are the defining property of an optimal control problem over a regular

variational problem.
• Initial conditions (optional).
• Final conditions (optional).
• Control constraints (optional, often box constraints).
• State constraints (optional).
• Interior point constraints (optional).

Additionally, the final time tf might either fixed or free. The objective (called the Bolza functional) is split into
an endpoint cost (also called Mayer term) and a Lagrangian:

J [u] = ϕ
(
x(tf ), tf

)︸ ︷︷ ︸
Endpoint Cost

+

∫ tf

0
L
(
x(t),u(t)

)︸ ︷︷ ︸
Lagrangian

dt

Note that the endpoint cost is more general than the Lagrangian in terms that the Lagrangian term can be
transformed to an endpoint cost by introducing a new state

ẋnx+1 = L
(
x(t),u(t)

)
, xnx+1(0) = 0
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and changing the endpoint cost to:

ϕ̃
(
x̃(tf ), tf

)
:= ϕ

(
x(tf ), tf

)
+ xnx+1(tf )

Additionally, non-autonomous problems can be transformed to autonomous problems by introducing a “clock
state” ẋnx+1 = 1, xnx+1(0) = 0 and changing the ODE accordingly:

ẋ(t) = f
(
t,x(t),u(t)

)
→ ẋ(t) = f

(
xnx+1,x(t),u(t)

)
8.1 Necessary Optimality Conditions for the Basis Problem

The basis optimal control problem does not have control, state or interior constraints:

min J [u], J [u] = ϕ
(
x(tf ), tf

)
+

∫ tf

0
L
(
x(t),u(t)

)
dt

subject to ẋ(t) = f
(
x(t),u(t)

)
xi(0) = xi,0 = const, i ∈ { 1, · · ·, nx }

r
(
x(tf ), tf

)
= 0, e.g. xj(tf ) = xj,f , j ∈ { 1, · · ·, nx }

For formulating the necessary optimality conditions, the following auxiliary functions are needed (the latter
one is called Hamiltonian):

Φ(x, t,ν) := ϕ(x, t) + νTr(x, t)

H(x,u,λ) := L(x,u) + λTf(x,u)

Note that, while kept implicitly, the auxiliary variables ν and λ are time-dependent! The λ are also called the
adjunct variables of the optimal control problem.

8.1.1 Boundary Conditions

To solve the optimal control problem, 2nx boundary conditions are needed (the optimality conditions will
yield one first-order ODE for every state and adjunct variable). Additional to the given boundary conditions of
the problem formulation, enough conditions have to be found to get 2nx conditions. Common cases:
(i) Fixed initial conditions xi(0) = xi,0 = const:

Either xk(0) is given or, if not, set λi(0) = −∂ϕ(x(0),x(tf ),tf )
∂xi(0)

(ii) Fixed final conditions xi(tf ) = xi,f = const:
Either xi(tf ) is given or, if not and xi is not part of r(· · · ), set λi(tf ) = ∂ϕ(x(tf ),tf )

∂xi(tf )

(iii) Mixed boundary conditions:
a) General boundary conditions r(x(0),x(tf ), tf) = 0:

If xi(0) is free, set λi(0) + ∂Φ
∂xi(0)

∣∣∣
t=0

= 0

If xi(tf ) is free, set λi(tf )− ∂Φ
∂xi(tf )

∣∣∣
t=tf

= 0

b) Periodic boundary conditions xi(0)− xj(tf ) = 0:
Set λi(0)− λj(tf ) + ∂ϕ

∂xi(0)
+ ∂ϕ

∂xj(tf )
= 0

60



If the final time tf is free, an additional condition has to be employed:

H
(
x(tf ),u(tf ),λ(tf )

)
= − ∂Φ

∂tf

8.1.2 First-Order Necessary Optimality Conditions (Maximum Principle)

Functions x∗, u∗ and λ∗ ̸≡ 0 are the optimal solution of the basis problem iff the canonical differential equations

ẋ =
∂H

∂λ
λ̇ = −∂H

∂x

and the boundary conditions are fulfilled and the optimal control u∗ minimizes the Hamilton function:
H
(
x∗(t),u∗(t),λ∗(t)

)
= min

ũ∈U
H
(
x∗(t), ũ,λ∗(t)

)
, ∀t ∈ [0, tf ] (8.1)

Where U ⊆ Rnu is the set of feasible controls. These conditions are called the maximum principle.
Definition: The Hamiltonian is called regular if and only if it has an unique minimum.
If the Hamiltonian is regular and the control u appears nonlinear in the Hamiltonian, condition (8.1) can

be formulated as
∂H

∂u
= 0

Derivation

8.1.3 Second-Order Necessary Optimality Condition (Legendre-Clebsch Condition)

For stationary x∗, u∗, λ∗, the second-order necessary optimality condition, also called the Legendre-Clebsch
Condition is that the Hessian of the Hamiltonian is positive semidefinite along the optimal state and control:

Hp
H

(
x∗(t),u∗(t),λ∗(t)

)
≥ 0, ∀t ∈ [0, tf ]

8.1.4 Example

8.1.5 Application: Optimal Robot Control

The Robot Dynamics

Optimal Control

Objective Functionals

Necessary Conditions

8.2 Bang-Bang Singular Control

This chapter covers optimal control functions where the control function appears only linear in the Lagrangian
and the motion equations:

L
(
x(t),u(t)

)
= L0

(
x(t)

)
+LT

1

(
x(t)

)
u(t), L0 : Rnx → R, L1 : Rnx → Rnu

f
(
x(t),u(t)

)
= f0

(
x(t)

)
+ fT

1

(
x(t)

)
u, f0 : Rnx → Rnx , f1 : Rnx → Rnu×nx
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Also, it is assumed to have box constraints for the controls: umin ≤ u(t) ≤ umax.
The according Hamiltonian is

H(x,u,λ) = L0

(
x(t)

)
+LT

1 (x(t)
)
u(t) + λT

(
f0
(
x(t)

)
+ fT

1

(
x(t)

)
u
)

=
(
LT

1 (x(t)
)
+ λTfT

1

(
x(t)

))︸ ︷︷ ︸
s(x,λ) :=

u(t) + L0

(
x(t)

)
+ λTf0

(
x(t)

)
where s(x,λ) is called the switching function. As of the maximum principle, the control u is optimal iff it
minimizes the Hamiltonian. Hence, the optimal control function u is given as a piecewise function depending
on the switching function:

ui(t) =


ui,min iff si

(
x(t),λ(t)

)
> 0

ui,max iff si
(
x(t),λ(t)

)
< 0

ui,sing iff si
(
x(t),λ(t)

)
≡ 0

Here, ui,sing is the singular control that is only needed if the switching function is zero over an interval. The
other two cases are called bang-bang control.
All of the following will only cover a single control ui(t), but the methods can be applied to more than

one control variable in a setting. Of course it is possible that some control variables are nonlinear in the
Lagrangian, hence a bang-bang or singular control is not needed in that case.

8.2.1 Singular Control

Let t1 and t2, t1 < t2 denote the start and end point of a singular control interval, respectively, i.e. the
switching function is zero in that interval:

si
(
x,λ

)
= 0, ∀t ∈ [t1, t2]

With the insight that a system has to keep itself in the singular control, also the time derivative s(1)i := dsi
dt

of the switching function has to vanish. And also the second-order time derivative s(2)i . In fact, every time
derivative has to vanish, yielding a recursive process for calculating the m-th time derivative:

s
(m)
i =

d

dt
s
(m−1)
i

(
x(t),λ(t)

)
≡ 0

Let m be the smallest number of which the control ui appears explicitly in the time derivative, ∂s
(m)
i

∂u1
̸= 0. This

yields a formula to determine ui,sing:

s
(m)
i

(
x(t),λ(t),u(t)

)
≡ 0

Where ui is part of the vector u.

Second-Order Necessary Optimality Condition for Singular Control

Theorem: If m <∞, then m is even. Let m = 2p, where p is called the order of the singular control.
The second-order necessary optimality condition for singular control, i.e. the generalized Legendre-Clebsch

is:

(−1)p ∂

∂ui
s
(m)
i

(
x∗(t),λ∗(t),u∗(t)

)
≥ 0, ∀t ∈ [t1, t2]
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The condition can be expanded to a sufficient condition by replacing the inequality with a strict inequality, i.e.
the left side has to be positive.
If the sufficient condition is fulfilled, two conclusions can be proven:
• If p is odd, ui is either discontinuous or continuously differentiable in t1.
• If p is even, ui is continuous in t1, but chattering is possible. If chattering occurs, the control ui “rings”

around zero until reaching t1, i.e. si has infinitely many root before entering the singular section.

8.2.2 Application: Time-Minimal Robot Control

8.2.3 Notes

• If all degrees of freedom would become singular simultaneously, all adjunct variables would be zero
(contradicting the maximum principle). Hence, this is not possible! For bang-bang control this means
that at least one control input has to operate at its maximum or minimum.

• With the given properties, a numerically calculated solution can be checked for sanity (e.g. if all controls
are singular on a section, the solution cannot be optimal).

• There are approaches to eliminate singular control beforehand so that only the number and order of
switching points has to be calculated. But often a control problem can be found that necessarily has
singular parts, so such methods cannot determine the optimal solution.

• The necessary conditions lead to a fully determined boundary value problem (BVP) for x and λ that can
be solved using numerical methods (see section 9.2), but the order of bang-bang and singular control
has to be known.

8.3 Value Function and Hamilton-Jacobi-Bellman Equation

There is a useful interpretation of the adjunct variables λ! Note that by varying the initial conditions t0 and
x(t0) = x0, different trajectories x∗, u∗, λ∗ are generated by solving the optimal control problem. The Value
Function expresses the value (of the objective) for a given initial condition (t0,x0):

V (t0,x0) = min
u∈U

(
ϕ
(
x(tf ), tf

)
+

∫ tf

t0

L
(
x(τ),u(τ)

)
dτ

)
V (tf ,x) = ϕ(x, tf )

The Hamilton-Jacobi-Bellman Equation is a partial differential equation for the value function:

−∂V (t,x)

∂t
= min

ũ

(
L(t,x, ũ) +

(
∂V (t,x)

∂x

)T

f(t,x, ũ)

)
V (tf ,x) = ϕ(x, tf )

If V (t,x) is a solution of the Hamilton-Jacobi-Bellman equation, then the minimization

min
ũ

(
L(t,x, ũ) +

(
∂V (t,x)

∂x

)T

f(t,x, ũ)

)
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generates the optimal control u∗ of the basis problem with t0 ≤ t ≤ tf with the adjunct variables:

λ∗(t) =
∂V
(
t,x∗(t)

)
∂x

Hence, the adjunct variables are the gradient of the minimal objective value w.r.t. the state.

8.3.1 Derivation

8.3.2 Notes

• If λ∗i (t) ≡ 0 for t ∈ [t1, t2], the value of the objective does not depend on x∗i (t) for the same interval.

• The value function contains all information needed for the optimal feedback control u∗(t,x). If the
value function would be available, the optimal control could be calculate for arbitrary initial conditions.
But most of the time it is not available. . .

• It is nearly impossible to solve the HJB equation numerically (!) for relevant problems, even without
constraints.

8.4 Constraints

It is possible to add state and control constraints to the optimal control problem in the form

g
(
x(t),u(t)

)
≥ 0

where the inequality is element-wise. Such a constraint is called a control constraint if u appears explicitly in
g, i.e. ∂g

∂u ̸= 0.

8.4.1 Mixed Inequality Constraints

Mixed inequality constraints are both dependent on the state and the control:

g
(
x(t),u(t)

)
≥ 0, g : Rnx × Rnu → Rng , t ∈ [0, tf ]

This constraint is added to the Hamiltonian with multipliers η yielding the augmented Hamiltonian, similar
to the Lagrangian of static optimization:

H(x,u,λ,η) = L(x,u) + λTf(x,u) + ηTg(x,u)

Analogous to the normal Hamiltonian, the augmented Hamiltonian is called regular along the optimal solution
x∗(t), λ∗(t), η∗(t) iff H(x∗(t),u,λ∗(t),η(t)

) has a unique minimum u = u∗(t) for all t ∈ [0, tf ].

Necessary Conditions (Maximum Principle)

Let the problem be autonomous, f , g, ϕ be continuously differentiable, U the set of feasible optimal controls
and let the inequality constraint g ≥ 0 have an active component gi with gi(t) = 0 for t ∈ [t1, t2], i.e. let it be
active on [t1, t2].

If not all boundary conditions are given, they have to be determined analogous tosubsection 8.1.1.
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Then the necessary optimality conditions can be defined analogous to the ones of the basis problem: Iff x∗,
u∗, λ∗, η∗ are optimal, the canonical differential equations

ẋ =
∂H

∂λ
λ̇ = −∂H

∂x

are fulfilled and

ηj

{
= 0 iff gj

(
x(t),u(t)

)
> 0

≤ 0 iff gj
(
x(t),u(t)

)
= 0

which is, for the special constraint gi, equivalent to:

ηj

{
= 0 t ∈ [0, t1) ∪ (t2, tf ]

≤ 0 t ∈ [t1, t2]

Also, the following condition have to be fulfilled on the switching points of the constraints:

lim
δ→0+

λ(t∆ + δ) =

(
lim
δ→0−

λ(t∆ + δ)

)
− ν∆ ·

∂gi
(
x(t∆),u(t∆)

)
∂x

Where η∆ = const ≤ 0 and t∆ is the entry/exit point, i.e. ∆ = 1 or ∆ = 2. This implies that the adjunct
variables are in general not continuous at the switching points.

The optimal control than has to minimize the augmented Hamiltonian over U :

H
(
x∗(t),u∗(t),λ∗(t),η∗(t)

)
= min

ũ∈U
H
(
x∗(t), ũ,λ∗(t),η∗(t)

)
, ∀t ∈ [0, tf ] (8.2)

Along the active constraint,

gi
(
x(t),u(t)

)
= 0 and ∂gi(x,u)

∂uj
̸= 0

yields a condition for determining uj along the active constraint. All other controls as well as uj outside of the
active section have to fulfill (8.2) and the Legendre-Clebsch condition (iff H is regular) or the corresponding
bang-bang/singular control, respectively.
As the problem is autonomous, the Hamiltonian is constant sectionally constant w.r.t. time t and it can

change when constraints become active/inactive.

8.4.2 State Inequality Constraints

Simple state inequality constraints

g
(
x(t)

)
≥ 0

that does not contain u, but at least one xi are handled like a mixture of mixed constraints and singular
control.

Let a single constraint gi be active in the interval [t1, t2], i.e. gi
(
x(t),u(t)

)
= 0 for t ∈ [t1, t2]. Then also the

time derivative has to vanish as well as the second-order time derivative1:

g
(mg)
i =

d

dt
g
(mg−1)
i

(
x(t)

)
≡ 0

1Let g(0)i := gi.
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Let mg be the smallest number such that g(mg)
i explicitly contains the control uj , then

g(mg)(x,u) = 0

yields an equation for determining uj in the interval [t1, t2] and mg is called the order of the state constraint.
Hence, a single active constraints determined a single control variable!

Augmented Hamiltonian

Let g(x) = g(x), i.e. only a single state constraint.
Mathematically, the active constraint g(x(t)) = 0 for t ∈ [t1, t2] is equivalent to

g(k)
(
x(t),u(t)

)
= 0, t ∈ [t1, t2]

for every k = 1, · · ·,mg. Hence, there are multiple, equivalent formulations of the maximum principle for
active state constraints by viewing at the corresponding augmented Hamiltonian, e.g.:

H0(x,u,λ0, η0) = L(x,u) +
(
λ0
)T

f(x,u) + η0g(0)(x)

...
Hk(x,u,λk, ηk) = L(x,u) +

(
λk
)T

f(x,u) + ηkg(k)(x)

...
Hk(x,u,λmg , ηmg) = L(x,u) +

(
λmg

)T
f(x,u) + ηmgg(mg)(x)

Maximum Principle

As in the previous section, a single state constraint g is assumed.
If not all boundary conditions are given, they have to be determined analogous tosubsection 8.1.1.
The maximum principle for state constraints is similar to the one for mixed constraints. Let g be active in

the interval [t1, t2]. Iff x∗, u∗, λk∗, ηk∗ are optimal, the canonical differential equations

ẋ =
∂Hk

∂λ
λ̇k = −∂H

k

∂x

are fulfilled and

η

{
= 0 iff g(x(t),u(t)) > 0

≤ 0 iff g(x(t),u(t)) = 0
⇐⇒ η

{
= 0 t ∈ [0, t1) ∪ (t2, tf ]

≤ 0 t ∈ [t1, t2]

Additionally ηk have to fulfill the sign conditions,

(−1)j d
j

dtj
ηk(t) = ηk−j(t) ≤ 0, j = 1, · · ·, k

and the final conditions

lim
δ→0−

dj

dtj
ηk(t2 + δ) = 0, j = 0, · · ·, k − 2 if k ≥ 2
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For k = 1, · · ·,mg the active constraints have to fulfill the following at the entry point:

lim
δ→0+

λk(t1 + δ) =

(
lim
δ→0−

λk(t1 + δ)

)
−

k∑
j=1

βj ·
∂g(j−1)

(
x(t1)

)
∂x

with βj ≤ 0. And on the exit point the condition

lim
δ→0+

λk(t2 + δ) = lim
δ→0−

λk(t2 + δ)

has to be fulfilled for k = 1, · · ·,mg. That is, the adjunct variables of the xi that appear in g(j−1) are
discontinuous at the entry point and continuous at the exit point of the active constraint.
The optimal control than has to minimize the augmented Hamiltonian over U :

H
(
x∗(t),u∗(t),λ∗(t),η∗(t)

)
= min

ũ∈U
H
(
x∗(t), ũ,λ∗(t),η∗(t)

)
, ∀t ∈ [0, tf ]

As the problem is autonomous, the Hamiltonian is constant sectionally constant w.r.t. time t and it can
change when constraints become active/inactive.
To get back and forth in different formulations for k, the following recursion can be defined. For mg ≥ 1:

η1(t) =

{
ν2 +

∫ t2
t η0(τ) dτ iff t ∈ [t1, t2]

0 else
β1 = ν1 + η1(t1)

And for mg ≥ 2 and k ≥ 2:

ηk(t) =

{∫ t2
t ηk−1(τ) dτ iff t ∈ [t1, t2]

0 else
βk = ηk(t1)

λk(t) = λ0(t)−
k∑

j=1

ηj(t) ·
∂g(j−1)

(
x(t)

)
∂x

Where ν1, ν2 ≤ 0 are given by

lim
δ→0+

λ0(t∆ + δ) =

(
lim
δ→0−

λ0(t∆ + δ)

)
− ν∆ ·

∂gi
(
x(t∆),u(t∆)

)
∂x

for ∆ = 1 and ∆ = 2.

Notes

• There are three different types of active constraints possible:
1. Contact point

The states control directly “into” the infeasible region and have to do an immediate turn when
having contact with the constraint (like bumping a car into a wall and bouncing off).

2. Touch point
The states just merely touch the border of the infeasible region and no changes have to be made to
the control (like a a go-around with merely touching the ground).
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Order mg Touch Point Boundary Arc
1 no yes

even yes yes
odd yes no

Table 8.1: Possibilities for active state-only constraints in optimal control given the order of the constraint.

3. Boundary arc
The states have to remain a while on the border (the “active section”) until going away again (like
sliding along the edge on an ice rink).

• If the Hamiltonian is regular, there are multiple possibilities shown in Table 8.1.

• Typically when working with the necessary conditions directly (analytically), H0 or Hmg are used.

• The conditions and relations for Hk are primarily useful to analyze for the solutions can be transformed
one into another and are as such equivalent.

• The solutions for x and u are the same for all Hk, but the λ and η might be different on the active
sections (and only on these).

8.4.3 Examples

Optimal Robot Control

Energy Minimization Problem

8.4.4 Summary

• The conditions derivable from the maximum principle for yields a multi-point boundary value problem
for x∗ and λ∗.

• The interior switching points tS,i result of:
– Switching points at bang-bang and singular control.
– The entry and exit into/of active sections of mixed or state constraints.
– Other constraints at interior time steps.
– A dynamic that is only defined piecewise.

• The switching structure (i.e. the number of order of switching points) in normally unknown!

• The switching structure has to be determined otherwise, e.g. by solving the unconstrained problem and
successively tighten the constraints (continuation/homotopy technique).

• Other things like discontinuities in the system dynamics and state constraints at interior points are not
covered here. . .

• Optimal control is hell more complex than it seems in this summary!
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9 Calculating Optimal Trajectories

This chapter covers the numerical calculation of optimal trajectories exploiting the theoretical results of chap-
ter 8.

9.1 First Computation Methods

9.1.1 Dynamic Programming

The technique of dynamic programming was introduced by Richard Bellman for numerically solving optimal
control problems:

• Start from the final state xf at tf , the discretized Bellman Equation is used to successively iterate
forward in time until t = 0.

• The effort raises exponentially with the dimensions nx of x (the “curse of dimensionality”).

• A lot of current research is based on dynamic programming, especially in the field of reinforcement
learning.

9.1.2 Gradient Methods (Min-H Methods)

1. Starting with an approximation for x, λ, 0 ≤ t ≤ tf , calculate an approximation for u by minimizing
the Hamiltonian at discrete time steps ti, e.g. using gradient methods.

2. Use this approximation for u to solve the dynamics numerically using forward integration and calculate
the adjunct variables using backward iteration.

3. Repeat with the new approximations for x, λ.

9.2 Indirect Methods

Indirect methods are based on the necessary conditions and try to solve the arising boundary value problem.

• Advantages:
– As it depends on the necessary conditions, the found solution is likely to be optimal.
– By using highly precise integration methods, the solution can be determined with a high precision.
This is especially useful, e.g. for satellite missions.

– Increasingly powerful tools like automatic differentiation ease this method.

• Disadvantages:
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– A lot of expert knowledge is needed to derive the optimality conditions and formulate the multi-point
boundary value problem.

– The explicit derivation of the necessary conditions can be really costly.
– The correct, optimal switching structure is not known a-prior.
– Numerical methods need initial approximations for x and λ which are, especially for λ, hard to

get.

9.3 Direct Methods

Direct methods avoid the explicit formulation of the necessary conditions by discretizing the control and
possible the state variables. They transform the optimal control problem to a nonlinear optimization problem
and employ methods of the nonlinear optimization.

• The user does not have to handle adjunct variables, switching structures, . . .

• The efficiency of the method highly depends on the discretization and the employed nonlinear optimiza-
tion problem.

• Progress in nonlinear optimization (especially SQP) yield highly efficient direct methods.

• Most commonly used.

All of the following assumes an optimal control problem given as:

min
u
J [u] = ϕ

(
x(t0),x(tf ), tf

)
subject to ẋ(t) = f

(
x(t),u(t)

)
, t ∈ [t0, tf ]

xi(0) = xi,0, i ∈ I0 ⊆ { 1, · · ·, nx }
xj(tf ) = xj,f , j ∈ If ⊆ { 1, · · ·, nx }

g
(
x(t)

)
≥ 0

g
(
x(t),u(t)

)
≥ 0

The biggest difference is that this problem does not have a Lagrangian term, but as the Lagrangian can be
transformed to a Mayer term, this is no loss of generality.

9.3.1 Direct Collocation Methods

Direct collocation methods approximate the control state variables u, x using piecewise polynomial functions.
First of all, the interval [t0, tf ] is split into ns segments [ti, ti+1] where

ti = t0 + τi · (tf − t0) with 0 = τ1 < τ2 < · · · < τns+1 = 1

with all τi given. The resulting segmented space is called the mesh. In every of these segments, u and x and
approximated using a polynomial. As u is part of the integrand for x, it is reasonable to choose a higher
polynomial degree for x than u.
Also let ti+1/2 := ti + hi/2 with hi := ti+1 − ti.
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First Discretization, Constant Control

A first idea is to approximate the control using constant functions
ũi(t) = ui(tj+1/2), tj ≤ t < tj+1, j = 1, · · ·, ns, i = 1, · · ·, nu

and to approximate the state using linear functions:

x̃i(t) = xi(tj) +
t− tj
hj

(
xi(tj+1)− xi(tj)

)
, tj ≤ t < tj+1, j = 1, · · ·, ns, i = 1, · · ·, nx

The optimization variables are given as the vector
p =

[
x(t1) u(t1+1/2) x(t2) u(t2+1/2) · · · x(tns) u(tns+1/2) x(tns+1) tf

]T
=
[
px
1 pu

1 px
2 pu

2 · · · px
ns

pu
ns

px
ns+1 tf

]T
where the final time tf might be left out if it is given. The second row specifies a shorthand notation for the
parameter of the approximation of x/u. The approximations shall now be determined subject to:

• Minimize the objective functional.
• Fulfill the differential equations and inequality constraints at the center of a segment.
• Comply with the initial and final conditions.
This yields the following finite-dimensional nonlinear optimization problem with np = ns · (nx+nu)+nx+1

optimization variables (or one less if the final time is given):
min

p∈Rnp
φ(p), φ(p) = ϕ

(
px
1 ,p

x
ns+1, tf

)
subject to f

(
x̃(tj+1/2), ũ(tj+1/2)

)
− ˙̃x(tj+1/2) = 0, j = 1, · · ·, ns

x̃i(t0) = xi,0, i ∈ I0 ⊆ { 1, · · ·, nx }
x̃j(tf ) = xj,f , j ∈ If ⊆ { 1, · · ·, nx }

g
(
x̃(tj+1/2), ũ(tj+1/2)

)
≥ 0, j = 1, · · ·, ns

With ũ(tj+1/2) = pu
j , x̃(tj+1/2) =

1
2

(
px
j + px

j+1

) and ˙̃x(tj+1/2) =
1
hj

(
px
j+1 − px

j

).
But low approximations like this have to use lots of mesh points to get good approximations. Hence,

approximations of higher degree might be useful.

Second Discretization, Linear Control

Approximate the control using linear functions:

ũi(t) = ui(tj) +
t− tj
hj

(
ui(tj+1)− ui(tj)

)
, tj ≤ t < tj+1, j = 1, · · ·, ns, i = 1, · · ·, nu

And approximate the state using linear functions:

x̃i(t) =

3∑
k=0

ci,j,k

(
t− tj
hj

)k

, tj ≤ t < tj+1, j = 1, · · ·, ns, i = 1, · · ·, nu

Here, ci,j,k is the k-th coefficient for the i-th component in the j-th segment [tj , tj+1], yielding four unknown
parameters per component and segment. One of the parameters is determined by requiring continuity an the
left side of the segment. The other three parameters are determined by requiring the fulfilling of the ODEs at
three time steps in the j-th segment:
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• Gauss Points: tj+1/2 −
√

3/5hj , tj+1/2, tj+1/2 +
√
3/5hj

– Theoretically provide the best approximation.
– Do not provide differentiable transitions between the segments.
– Need 3ns evaluations of the ODEs.

• Lobatto Points: tj , tj+1/2, tj+1

– Provide continuously differentiable transitions between the segments.
– Need 2ns + 1 evaluations of the ODEs.

When using Lobatto points, the NLP parameters per segment can be reduced from four to two, thus reducing
the collocation constraints from three to one per segment. But the remaining constraints are more nonlin-
ear. . .Hence, the dimension of the NLP is similar to the constraint approximation, bit given a much better
approximation of the solution.
By plugging the constraints/locations of the Lobatto points into the state approximation, this yields the

following formulas for the coefficients:
ci,j,0
ci,j,1
ci,j,2
ci,j,3

 =


1 0 0 0
0 hj 0 0
−3 −2hj 3 −hj
2 hj −2 hj

 ·

pxi,j
pẋi,j
pxi,j+1

pẋi,j+1

 =


pxi,j
hjp

ẋ
i,j

−3pxi,j − 2hjp
ẋ
i,j + 3pxi,j+1 − hjpẋi,j+1

2pxi,j + hjp
ẋ
i,j − 2pxi,j+1 + hjp

ẋ
i,j+1


Where pẋi,j = ẋi(tj) = fi

(
x(tj),u(tj)

)
= fi(p

x
j ,p

u
j ). Hence, all coefficients can be computed using only the

parameter vector
p =

[
x(t1) u(t1+1/2) x(t2) u(t2+1/2) · · · x(tns) u(tns+1/2) x(tns+1) u(tns+1+1/2) tf

]T
=
[
px
1 pu

1 px
2 pu

2 · · · px
ns

pu
ns

px
ns+1 pu

ns+1 tf
]T

with one parameter more than the constant control approximation. That is, np = (ns + 1)(nx + nu) + 1
parameters (or one less if the final time is fixed). This yields the following nonlinear optimization problem:

min
p∈Rnp

φ(p), φ(p) = ϕ
(
px
1 ,p

x
ns+1, tf

)
subject to f

(
x̃(tj+1/2), ũ(tj+1/2)

)
− ˙̃x(tj+1/2) = 0, j = 1, · · ·, ns

x̃i(t0) = xi,0, i ∈ I0 ⊆ { 1, · · ·, nx }
x̃j(tf ) = xj,f , j ∈ If ⊆ { 1, · · ·, nx }

g
(
x̃(tj+1/2), ũ(tj+1/2)

)
≥ 0, j = 1, · · ·, ns

With ũ(tj+1/2) = pu
j , x̃(tj+1/2) =

1
2

(
px
j + px

j+1

) and ˙̃x(tj+1/2) =
1
hj

(
px
j+1 − px

j

).
Discretization of Inequality Constraints

In the NLP, the inequality constraints are evaluated at the points tj , i.e. the mesh points. But why not at other
points, e.g. g(tj+1/2)? As of the theoretical results, one control is determined by

g(mg)
(
x(t),u(t)

)
=

dmg

dtmg
g
(
x(t)

)
≡ 0

in an active segment t ∈ [t1, t2]. Hence, for consistency, the number of degrees of freedom on a potential arc
have to equal the number of degrees of freedom of the discretized control constraints. This is only ensured
when the inequality constraints are evaluated at the mesh points tj .
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Sparsity

In direct collocation methods, the resulting NLPs have sparse gradients and Jacobians. For example, the
memory complexity of the full Jacobian is O(n2s), while the non-zero elements rise linearly. By exploiting this
sparse structure, the efficiency for NLP solvers can be highly enhanced!

Convergence Properties and Solution Validation

By studying the Lagrangian of the NLP, it is possible to show that a gradient method that is using the Lagrangian
for determining the step size, the maximum principle is taken into account in a discretized matter. That way,
using direct collocation methods, it is possible to compute approximations for the adjunct variables and the
multipliers η0. Hence, the theoretical optimality conditions can be validated afterwards!

For autonomous problems, the Hamiltonian has to be sectionally constant which can be validated using the
calculated approximations ã(t), ũ(t), λ̃0(t), η̃0(t). Another thing that can be validates is whether the initial
and final conditions for the adjunct variables are fulfilled.

Derivation

Choosing the Mesh Points

Direct collocation methods typically start with a rough grid and a rough approximation for x∗ and u∗ that is
then successively adjusted until the solution is smooth enough. But how to do this mesh adjustments?

• Ideally: A segment-wise approximation error
∥∥x̃(t)− x∗(t)

∥∥, ∥∥ũ(t)− u∗(t)
∥∥.

• Alternatively: Use the error of in the ODE and inequality constraints:
∥∥f(x̃(t), ũ(t))− ˙̃x(t)

∥∥, ∥∥g_(x̃(t), ũ(t))∥∥
with g_ := |g| as the element-wise absolute value.

And refine the mesh until ∥·∥ ≤ εtol.

Segment-Wise Error Estimation Assuming ũ(t) = u∗(t), theories of collocation methods can be used to
estimate the error ∥∥x̃(t)− x∗(t)

∥∥
where x∗ is the “real” solution of the BVP. But this method does not work well for direct collocation methods.

Segment-Wise Error Estimation of Time-Continuous Constraints Simple strategy that works good in
practice: Check the fulfilling of the constraints at test points, e.g. for the second discretization:∥∥f(x̃(t), ũ(t))− ˙̃x(t)

∥∥ ∥∥g_(x̃(t), ũ(t))∥∥ for t = tj+k/4 = tj +
k

4
hj , k = 1, 2, 3

Then successively split the segments with too big errors into smaller segments.
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Segment-Wise Estimation of Optimality Error The previous error estimation methods only take the con-
straints into account, not that this is an optimal control problem. But it is also possible to approximate the
“optimality error” using the calculated values for the adjunct variables (e.g. using quadrature rules):

L = ϕ
(
x̃(0), x̃(tf ), tf

)
+

ns∑
j=1

∫ tj+1

tj

[
λ̃T(t) ·

(
f
(
x̃(t), ũ(t)

)
− ˙̃x(t)

)
+ η̃T(t) · g

(
x̃(t), ũ(t)

)]
dt︸ ︷︷ ︸

Optimality Error in the j-th Segment

Implementation

The general approach to implement direct collocation methods is shown inalgorithm 7.

Algorithm 7: Direct Collocation Algorithm.
1 Initialization: Choose a start grid (τ (0)j

)n(0)
s +1

j=1
and initial values px,(0)

j = x(tj), pu,(0)
j = u(tj+1/2)

2 while not converged (error in ẋ, maximum iterations or maximum mesh size) do

3 Adjust the mesh: (τ (k)j

)n(k)
s +1

j=1

4 Solve the resulting NLP:

min
p∈Rnp

φ(p)

subject to a(p) = 0

b(p) ≥ 0

5 k ← k + 1

Notes

• For a rough mesh, the tolerances εopt and εft do not have to be chosen too tight as the NLP solver might
not ding a solution then.

• While successively refining the grid, the tolerances can be set to tighter values.

• Ideally, the most SQP iterations are needed for the first two meshes. For the high-dimensional NLPs for
fine grids, only a few iterations are needed.

• System parameters can be optimized simultaneously by adding them to the variable vector p.

Application: Optimal Robot Control

9.3.2 Direct Shooting Methods

Similar to the direct collocation methods, shooting methods rely on a segmentation of the the interval [t0, tf ]
into ns segments [tj , tj+1] with ns + 1 mesh point tj . Then the control u is approximated per section, e.g.
using constant or linear functions.
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Direct shooting methods then solve various initial value problems until one fulfills the boundary conditions.
Informally speaking, multiple trajectories are “shot into the room” until one is feasible. More formally, the
process is:

1. Divide the interval into ns segments and approximate the control u, e.g. using a piecewise linear
function ũ. Then parameterize u by p =

[
u(t1) · · · u(tf ) tf

]T ∈ Rnu·(ns+1).

2. Simulate the movement by forward-integrating the system dynamics starting from the initial values and
by using the approximated control ũ. This gives an approximation of the state, x̃.

3. Calculate the objective and the violations of the constraints, especially the final constraints.

4. Optimize p such that the objective is minimized while fulfilling the constraints. Repeat.

But the calculation of the NLP gradients and the Jacobians needs calculating the sensitivity matrix ∂x(t;p)
∂p .

• Advantages:
– The resulting dimension of the NLPs are lot less than for direct collocation methods.
– In every iteration of the NLP solver, a solution of the ODEs is available.

• Disadvantages:
– Solving the initial value problem may highly depend on the approximations ũ, t̃f . To increase the
robustness, multiple shooting methods can be used.

– Approximations for the adjunct variables are not as natural as in direct collocation methods, but
possible.

9.4 Notes

• Some big disadvantages of indirect methods, that good approximations of the optimal state- and adjunct
variables and the switching structure are needed, can be overcome by using a direct method first.

• The majority of optimal control problems are nowadays solved using direct methods (other approaches
exist besides direct collocation and shooting methods).

• Important applications are for example, aerospace engineering, robots, vehicles, process engineering,
economy, biology, ecology, . . .

• Direct collocation methods are also called “simultaneous simulation and optimization”.

• Direct shooting methods are also called “iterative simulation and optimization”.
– Two different algorithms are used for simulation and optimization.
– Highly efficient and stable calculation of the sensitivity matrix using special integration techniques.
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10 Optimal Feedback Control

Applying the computed control trajectory directly as an open loop (feedforward) control as illustrated
in Figure 10.1 would cause growing divergence from the nominal state x∗

d(t). This can be caused by e.g.:
• Errors in the model (complex models cannot be 100% accurate).
• Noise: During the run of a dynamic process noise may affect the systems behavior.

Hence, the wanted end state might not be reached when just using feedforward control.

10.1 Classical Feedback Control (Position Control)

It seems obvious to just use a classical position control for the nominal stater state trajectory x∗(t) (a set point
trajectory control) as illustrated in Figure 10.2. But this causes “ringing” around the nominal trajectory, e.g.
using a PID control law. Additionally, using a position control has more flaws:

• An individual control for each state component is merely possible.
• The quality of the position control depends on the desired states and the control parameters.
• Returning to the nominal trajectory using control laws is not the optimal trajectory from the disturbed

state as the initial state to the final state!
• Also, using position control can cause violations of the constraints, e.g. a bang-bang control always

operates on the border of the control constraints. Hence, returning to the nominal trajectory might
cause overshooting this constraints.

10.2 Optimal Feedback Control

If the real trajectory at time step t1 differs from the nominal state x∗(t1;x0) that was calculated starting from
x0 it would be optimal to now following a new trajectory with the initial state xd(t1). But how to calculate
this new trajectory? These computations have to be done anytime. But data from the old trajectory can be
used for faster calculations!
These re-computations would not be necessary if the optimal control trajectory would not be calculated

as a function of time u∗(t) (as a feedforward control), but as a function of the initial state u∗(x0), i.e. as a
feedback control. Sadly, it is nearly impossible to calculate this function except for some special cases. . .

Trajectory
Planning

Open-Loop
Control

Dynamic
Process xa(t)

x∗
d(t)

u∗(t)

u∗(t)

Figure 10.1: Feedforward Control
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Trajectory
Planning Control Dynamic

Process xa(t)

Sensors,
Odometry

x∗
d(t)

u∗(t)

u∗(t)

Figure 10.2: Feedback Control

10.3 Linear Quadratic Regulator (LQR)

Linear systems with quadratic objective are the only system for which the optimal feedback control u∗(x0)
can be computed in closed form! A linear system with quadratic objective is given as

min
u
J [u], J [u] =

∫ tf

t0

(
xT(t)Qx(t) + uT(t)Γu(t)

)
dt

subject to

ẋ(t) = A(t)x(t) +B(t)u(t)

x(t) = x0

x(tf ) free
with a symmetric and positive definite matrix Q and a diagonal Matrix Γ = diag(γ1, · · ·, γnu). The optimal
control law is then given as

u(x) = −Γ−1BT(t)P (t)x

where the matrix P (t) is found by solving the matrix-Riccati ODE
Ṗ (t) +Q+AT(t)P (t) + P (t)A(t)− P (t)Γ−1B(t)BT(t)P (t) = O

with the boundary condition P (tf ) = O.
If the system is time invariant, i.e. Ȧ = O, Ḃ = O or tf =∞, it follows Ṗ = O and hence P is given by

solving the algebraic matrix-Riccati equation:
Q+ATP + PA− PΓ−1BBTP = O

As P is symmetric, these are nx · (nx + 1)/2 equations to determine every element of P .
These matrix-Riccati algebraic/differential equations can be solved efficiently using special numerical

methods. LQR systems can approximate a lots of systems and are therefore more useful than it appears at
first (e.g. active damping in cars or linearized inverted pendulum). In theory, LQR methods can be applied
to any system using an infinite-dimensional nonlinear embedding (“measurement”) which can be finitely
approximated, still yielding good results. Another approach is iterative LQR (iLQR) that linearizes the system
in every time step.

10.3.1 Derivation

10.4 Neighboring Extremals

TO approximately the new trajectory x∗(t;xa(t1)
), all information that have already been expended for

calculating the trajectory x∗(t;x0) can be used. These updates have to be be done continuously.
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10.4.1 Indirect Methods

Indirect methods calculates a solution trajectory x∗(t), u∗(t), λ∗(t), η∗(t) as the numerical solution of the
multi-point boundary value problem rising from the necessary optimality conditions. By Taylor-expanding the
disturbed trajectory x∗(t;x0 + ε0) around the nominal trajectory yields a linear-quadratic optimal control
problem (called “accessory minimum problem”) for

δx(t), δu(t), δλ(t)

Different variants of this are possible, e.g. the repeated correction method:

1. Calculate x∗(t), u∗(t), λ∗(t), η∗(t) using the multi-point BVP width multiple-shooting methods.

2. Feedback schema for noisy nominal trajectory u∗(t0;x0 + ε0) = u∗(t0;x0) + δu(t0) containing the
nominal control and a correction term.

3. Calculate the control correction using: ∆u(t0) = K1(t0) · ∂x(t0) +K2(t) · ∂λ(t0)

4. Apply this repeatedly for different time steps t0 = t1.

• Advantages:
– Fast, numerical calculation.
– First-order optimal trajectories.
– Can be used to correct noise in the model parameters of the ODE.

• Disadvantages:
– Only locally applicable along a nominal trajectory (i.e. “little” noise that does not change the

switching structure)
– Depends on the multi-point BVP of the necessary conditions. Hence, application is time consuming

as the ODEs have to be formulated.

10.4.2 Direct Methods

Direct methods solve the problem by discretizing the problem, resulting in a NLP that contains the initial
value x(t0) in its equality constraints. Studying the dependency on this parameters leads to sensitivity and
stability analysis of nonlinear optimization problems.

For direct collocation methods it can be shown that the linear-quadratic optimal control problem is analogous
to a quadratic problem (QP) for calculating the corrections p∗(x0 + ε0) = p∗(x0) + δp.

10.4.3 Nonlinear Model Predictive Control (NMPC)

For nonlinear model predictive control, a series of optimal control problems is solved for a varying time
horizon Pj . These methods are commonly used for chemical processes with slow reaction time and aerospace
engineering, but not so often in fast environments like robot movements.
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10.5 Numerical Synthesis of the Nonlinear Feedback Control

Direct collocation methods can compute optimal control problems with different initial conditions x0 pretty
fast and robust. Using an appropriate “step size control”, multiple neighboring trajectories can be computed
kind of automatic.

• First approach for synthesis u∗(x): Calculate u∗ using the HJB equation where x∗(t), λ∗(t) are approxi-
mated using reference trajectories for xa(t1).

• Second approach: Approximate u∗(t), e.g. an approximation that has been trained on lots of open-loop
optimal trajectories.
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11 Further Topics on Optimal Control

11.1 Inverse Optimal Control

Inverse optimal control approaches the following problem:

• Given a dynamic process ẋ = f
(
x(t),u(t)

) and measurements of a run xk = x(tk)+εk that is in general
noisy,

• Assume the run was controlled optimally,

• Find the objective function that was used.

One possible approach is the linear combination of multiple “basis” functionals Jk[u], e.g. one for minimum
energy and one for minimum time:

J∗[u] =

nJ∑
k=1

ωkJk[u]

This yields a two-level optimization problem:

• “Outer” problem: Finite-dimensional, nonlinear optimization problem: Φ(ω) =
∑nm

k=1∥x∗(tk,ω)− xk∥22

• “Inner” problem: Constraints of the outer problem; Optimal control problem with solution x∗

min
u
J∗[u], J∗[u] =

nJ∑
k=1

ωkJk[u]

subject to ẋ(t) = f
(
x(t),u(t)

)
11.2 Differential/Dynamic Games

Differential games have ODEs for the complete state x containing multiple ODEs for every player and controls
v1(t), · · ·,vnp(t) for every placer. Additionally they might have state or control constraints. The players then
might minimize or maximize one or more objective cooperative or non-cooperative.

11.2.1 Non-Cooperative Two-Player Zero-Sum Differential Games

A common class of differential games are non-cooperative two-player zero-sum differential games where:

• Non-cooperative means that one player tries to maximize the objective and the other tries to minimize it.

• Zero-sum means that the loss of one player is the reward of the other and vice versa.
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Necessary conditions for these games can be derived from the minimax principle similar to the maximum
principle using the ODEs for both players, adjunct differential equations and a Hamiltonian.
This also yields a multi-point BVP that can be solved numerically using indirect methods and it is also

possible to use direct methods.
These games can be used, e.g. to generate robust trajectories by letting one player “be the noise” or friction

or similar that tries to destroy the optimal trajectory.

Example

11.3 Learning Methods and Optimization

Learning methods (frommachine learning) often rely on formulations of solving specific optimization problems.
Hence, machine learning and optimization is highly coupled. The focus is a little bit different as most
optimization methods try to find solutions as accurate as possible while ML algorithms try to generalize as
best as possible to handle unseen scenarios.

11.3.1 Foundations

The underlying task often is to find a model fθ(x) that has a specific input/output behavior that is enforced
using a loss function, e.g. the least squares loss function. These models are then optimized using basic gradient
methods, gradient descent, without step size determination but using a small step size or an adaptive one (e.g.
adam, adagrad, adadelta). A common function approximator are neural networks which use multiple layers,
activation functions and weights to approximate arbitrary functions (in fact, any function can be approximated
using a two-layer neural net).
Some open questions are:

• Why and when does gradient descent work and how fast?

• Why does not training not always cause overfitting (even when the number of parameters are much
higher than the number of samples)?

• How to interpret the trained models (explainable AI)?

11.3.2 Reinforcement Learning

Reinforcement learning is highly related to optimal control in terms if a reward that is maximized by tweaking
controls etc. However, optimal control is often discrete and models are often treated as stochastic models
allowing reasoning about uncertainty. It is also possible to not have any model (e.g. in model-free reinforcement
learning)! The model is then learned implicitly.

Reward

In the RL setting, it is possible to study both finite and infinite time horizons using discounted rewards ensuring
that the sum of rewards converges.
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Value Function

In RL, a policy π is searched which is commonly dependent on the state, not time: π = π(x).
The value function describes the discounted reward starting from the current state:

V π(x0) =

∞∑
k=0

γkrk
(
xk, π(xk)

)
The state-action function describes the discounted reward of the current state if a specific action is taken next
and following the policy afterwards:

Qπ(x0,u0) = r1(x0,u0) +

max∑
min

First Approach

A first approach would be to learn the control directly by maximizing the reward J using gradient descent:

∇θJ =
∂J

∂πθ

∂πθ
∂θ

But this requires a gradient of the objective. . . The approximation may have high variances. Additionally, new
gradient is computed independently of old approximations. Hence, no learning happens.

Learning the Value Function

It is better to solve the optimization problem

u∗(x) = argmax
u

Qπ(x,u)

by approximating the value function V (x0) with a function Vθ(x0), e.g. with Temporal Difference Learning
(TD).

This uses the Bellman equation

V (x) = max
u

r(x,u) + γV (x,u) = max
u

Q(x,u)

which is a discretized version of the H-J-B equation. Temporal difference learning measures the TD-error
δn = r(x,u) + Vθ(xn) − γVθ(xn+1) and uses gradient descent to update the parameters θ. An instance of
this class of algorithms is Q-Learning.

• Advantages:
– Small variance in the approximations of the expected reward.

• Disadvantages:
– In every state, an optimization problem has to be solved. The overhead can be reduced by
discretizing the control and just trying out all possibilities.

– No guarantee of convergence (but this holds for every algorithm proposed in this course as it may
guarantee convergence but convergence to a poor local minimum).
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Actor-Critic

Another approach is to approximate the control and the value function at the same time:

• The actor generates control u for a given state x and

• the critic estimates the quality of the current control and learns the value functions that is used to tweak
the control parameters.

This method combined the advantages of the previous approaches as it does not require to solve an optimization
problem in each step and no control discretization. It also allows a more precise measurement of the gradients.

Notes

• All proposed methods are based on an approximation of the value function or the control. In practice,
neural networks are often used for these approximations.

• Stability proves have been made for systems with special structures (e.g. affine dynamics).

• Better convergence than actor-only methods.

• The approach can be extended to models with continuous time.
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