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1. Preliminaries

In this chapter we discuss the groundwork for the upcoming topics. Along with these subjects, basic knowledge
from linear algebra is required.

1.1. Complex Numbers

One of the underlying principles of quantum mechanics (QM) and therefore quantum computing (QC), too,
are complex numbers. This section summarizes some results for them very briefly.

Let z = a+ ib ∈ C be a complex number with the real and imaginary components Re(z) = a, Im(z) = b ∈ R.
Its magnitude is

|z| :=
√
a2 + b2 =

√
zz∗

with the complex conjugate z∗ = a− ib. The complex conjugate is distributive over addition and multiplication1,
i.e., (z1 + z2)

∗ = z∗1 + z∗2 and (z1z2)
∗ = z∗1z

∗
2 holds for two complex numbers z1, z2 ∈ C. Any complex number

can also be written in polar form z = reiφ with magnitude
|z| =

√
zz∗ =

√
reiφre−iφ =

√
r2eiφ−iφ =

√
r2 = |r|.

Definition 1 (n-th Root of Unity). We call the special complex number ωn = e2πi/n the n-th root of unity.

Theorem 1. Let ωn be the n-th root of unity with n > 1. Then
∑n−1

k=0 ω
ak
n = 0 holds for every constant a ∈ Z.

Proof.
n−1∑
k=0

ωakn =
n−1∑
k=0

(ωan)
k =

1− (ωan)
n

1− ωan
=

1− e2iaπ

1− ωan
=

1− 1

1− ωan
=

0

1− ωan
= 0

1.2. Continued Fraction Expansion

Let x ∈ (0, 1) be a real number2. Then we can express this number as its continued fraction expansion (CFE)

x =
1

a0 +
1

a1+
1

a2+···

where a0, a1, · · · ∈ N+. The CFE of x is finite iff x is rational. The sums
1

a0

1

a0 +
1
a1

1

a0 +
1

a1+
1
a2

· · ·

1For other useful properties, see https://en.wikipedia.org/wiki/Complex_conjugate#Properties.
2Note that the restriction on the interval (0, 1) is purely for convenience as we only have x’s between zero and one down the line. It
is also possible to extend continued fraction expansions to R.
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are called partial sums. For calculating a0, a1, . . ., let

x0 :=
1

a0 +
1

a1+
1

a2+···

x1 :=
1

a1 +
1

a2+···
x2 :=

1

a2 + · · ·
· · ·

then the coefficients are ai = [1/xi], where the brackets indicate the integral part, i.e., the part in front of the
decimal. If for any j, xj = 0, the CFE terminates and the number is exactly represented.

Example 1. Let x = 11 490/214 ≈ 0.701294. Then the CFE is calculated as follows:

i xi 1/xi ai

0 0.701 294 1.425 94 1

1 0.425 94 2.347 77 2

2 0.347 77 2.875 44 2

3 0.875 44 1.142 28 1

4 0.142 28 7.028 30 7

5 0.028 30 35.3333 35

6 0.333 33 3 3

7 0

The final CFE is therefore
x =

1

1 + 1
2+ 1

2+ 1

1+ 1

7+ 1

35+1
3

with the coefficients (a0, a1, a2, a3, a4, a5, a6) = (1, 2, 2, 1, 7, 35, 3).
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2. Postulates of Quantum Mechanics

In this chapter we discuss the postulates of QM and some important protocols and results in QC such as the
no-cloning theorem. This theorem states that it is impossible to copy a quantum state!

2.1. States

In classical computing, a bit is either 0 or 1. A quantum bit, a qubit, however, is more general and has the basis
states |0⟩ and |1⟩. The states are formed by basis vectors |0⟩ = (1, 0)† and |1⟩ = (0, 1)†. More generally, an
arbitrary quantum state |ψ⟩ can be a combination of the basis states, |ψ⟩ = c0 |0⟩+ c1 |1⟩, a superposition (with
complex coefficients c0, c1 ∈ C). However, the state has to be normalized, i.e., |⟨ψ|ψ⟩|2 = 1. The left part of
this inner product is called a bra vector representing the conjugate transpose of the right side, the ket vector.
The following postulate digests this idea more formally.

Postulate 1 (Quantum State). Any closed physical system can be associated with a Hilbert space H. The state of
the system is completely described by a state vector |ψ⟩ =

∑d−1
i=0 ci |i⟩ with

∑d−1
i=0 |ci|2 = 1 where {|i⟩}d−1

i=0 forms a
basis of Hd.

Remark 1. The basis is not confined to the computational basis {|0⟩ , |1⟩}, although this basis is often used. It
may be any other orthonormal basis of H, see subsubsection 2.2.1. For basis of Hilbert spaces with d > 2, see
section 2.4.

Instead of writing out the complex coefficients c0 and c1, we can also parameterize an arbitrary superposition
with angles γ, φ, θ ∈ R:

|ψ⟩ = c0 |0⟩+ c1 |1⟩ = eiγ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)
.

However, as we will see in section 2.3, a global phase such as eiγ vanishes in all important calculations as
eiγe−iγ = 1. Hence, we can also parameterize any state with just two angles φ ∈ (0, 2π] and θ ∈ (0, π]:

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ .

Checking that this state is actually normalized is straightforward:

⟨ψ|ψ⟩ =
(
cos

θ

2
⟨0|+ e−iφ sin

θ

2
⟨1|
)(

cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)

= cos
θ

2
⟨0|+ e−iφ sin

θ

2
⟨1|
)(

cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)

= cos2
θ

2
⟨0|0⟩︸︷︷︸
=1

+eiφ cos
θ

2
sin

θ

2
⟨0|1⟩︸︷︷︸
=0

+e−iφ cos
θ

2
sin

θ

2
⟨1|0⟩︸︷︷︸
=0

+eiφe−iφ sin
θ

2
sin

θ

2
⟨1|1⟩︸︷︷︸
=1

= cos2
θ

2
+ sin2

θ

2
= 1.
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Note that in this case ⟨ψ|ψ⟩ = 1, so |⟨ψ|ψ⟩|2 = 1 holds, too, and we can drop the absolute-square. In most of
the following discussions where we need explicit parametrization, we confine ourselves to real coefficients,
i.e., φ = 0. This simplifies the discussion as now there is only one parameter θ.

2.2. Evolution

The evolution of quantum states, i.e., how they pass between states, is described by linear transformations U ,
also called gates. These gates transform a quantum state |ψ⟩ into another quantum state |ψ′⟩. In quantum
circuits, we denote an application of U1 and then U2 to a state |ψ⟩, i.e., U2U1 |ψ⟩, as:

|ψ⟩ U1 U2 U2U1 |ψ⟩

Postulate 2 (State Evolution). The evolution |ψ(t0)⟩
U−→ |ψ(t)⟩ of a closed physical system is described by a

unitary transformation UU † = 1.
Theorem 2 (Unitarity of Quantum Gates). A linear quantum gate U is unitary, i.e., UU † = 1.
Proof.

2.2.1. Gates

In this section we collect the most important single-qubit gates. They are summarized in Table 2.1 and their
semantics are given in the caption.
Theorem 3 (Decomposition of Two-By-Two Unitary Matrices). Every unitary matrix U ∈ C2×2 can be decom-
posed into three rotations as U = eiαRz(β)Ry(γ)Rz(δ).

From this theorem, one might think that it is necessary to implement every rotation in the lab for a universal
quantum computer. Fortunately, this is not the case! As we will see in chapter 4, only three gates are necessary
to implement arbitrary rotations.

The Hadamard Gate

A special gate we regularly use is the Hadamard gateH. As shown in Table 2.1 transforms it the computational
basis states into an equal superposition of themselves:

H |0⟩ = 1√
2
(|0⟩+ |1⟩) =: |+⟩ H |1⟩ = 1√

2
(|0⟩ − |1⟩) =: |−⟩ (2.1)

As these states are extremely important, we often denote them as |+⟩ and |−⟩ which are again basis states of
the Hilbert space as the following hold:

⟨+|+⟩ = 1 ⟨+|−⟩ = 0 ⟨−|+⟩ = 0 ⟨−|−⟩ = 1

As these vectors are the Eigenvectors of X, we often call this basis the X-basis while the computational basis is
also often called Z-basis.
Of course, we might also want to apply the Hadamard gate to a composite state (see section 2.4 for an

introduction to composite states). As the application and transformation into the computational basis “by
hand” is quite tedious,

H⊗2 |01⟩ = |+−⟩ = 1

2
(|0⟩+ |1⟩)⊗ (|0⟩ − |1⟩) = 1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩),

we often make use of the following result.
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U U |0⟩ U |1⟩ U |+⟩ U |−⟩

X =

[
0 1
1 0

]
= HZH |1⟩ |0⟩ |+⟩ − |−⟩

Y =

[
0 −i
i 0

]
≡ XZ i |1⟩ −i |0⟩ −i |−⟩ i |+⟩

Z =

[
1 0
0 −1

]
|0⟩ − |1⟩ |−⟩ |+⟩

H = 1√
2

[
1 1
1 −1

]
|+⟩ |−⟩ |0⟩ |1⟩

Ry(γ) =

[
cγ −sγ
sγ cγ

]
cγ |0⟩+ sγ |1⟩ −sγ |0⟩+ cγ |1⟩ cγ |+⟩ − sγ |−⟩ sγ |+⟩+ cγ |−⟩

Rz(β) =

[
eiβ/2 0

0 e−iβ/2

]
eiβ/2 |0⟩ e−iβ/2 |1⟩ eiβ/2 |0⟩+ e−iβ/2 |1⟩ eiβ/2 |0⟩ − e−iβ/2 |1⟩

Table 2.1.: Common qubit gates and their effect on the computational and Hadamard basis. For brevity,
let cγ := cos(γ/2) and sγ := sin(γ/2). The gates have the following effects in the computational
basis: X implements a logical not, Y combines a phase-flip and logical not, Z implements a
phase-flip,H creates an equal superposition, Ry(γ) rotates around an arbitrary angle γ, and
Rz(β) adds a phase. In Hadamard basis, the gates have the following effects: X implement a
phase-flip, Y combined a phase-flip and logical not, Z implements a logical not,H creates an
equal superposition, Ry(γ) rotates around an arbitrary angle γ, and Rz(β) adds a phase.

Theorem 4 (Hadamard Gate on Basis States). Let |x⟩ be any basis state with n qubits identified by the bit string
x ∈ {0, 1}n. Then applying Hadamard gates on the individual qubits yields

H⊗n |x⟩ = 1√
2n

∑
y∈{0,1}n

(−1)x·y |y⟩ ,

where z sums over all possible n-bit strings, i.e., the basis states, and x · y is the bit-wise dot-product of x and y
modulo 2.

Proof. We proof this by induction. For n = 1, we have

H |x⟩ = 1√
2

(
(−1)x·0 |0⟩+ (−1)x·1 |1⟩

)
=

1√
2

(
|0⟩+ (−1)x |1⟩

)
matching (2.1). Assume now that the statement holds for some n and let x =: x1x: be a splitting of the
(n + 1)-bit string such that x1 ∈ {0, 1} and x: ∈ {0, 1}n and analogous for y =: y1y:. We show that the

11



statement also holds for n+ 1:
H⊗(n+1) |x⟩ = H⊗(n+1) |x1⟩ |x:⟩ = H |x1⟩ ⊗H⊗n |x:⟩

(†)
=

1√
2

(
|0⟩+ (−1)x1 |1⟩

)
⊗ 1√

2n

∑
y:∈{0,1}n

(−1)x:·y: |y:⟩

=
1√
2

(
(−1)x1·0 |0⟩+ (−1)x1·1 |1⟩

)
⊗ 1√

2n

∑
y:∈{0,1}n

(−1)x:·y: |y:⟩

=
1√
2

∑
y1∈{0,1}

(−1)x1·y1 |y1⟩ ⊗
1√
2n

∑
y:∈{0,1}n

(−1)x:·y: |y:⟩

=
1√
2n+1

∑
y1∈{0,1}
y:∈{0,1}n

(−1)x1·y1 |y1⟩ ⊗ (−1)x:·y: |y:⟩

=
1√
2n+1

∑
y1∈{0,1}
y:∈{0,1}n

(−1)x1·y1⊕x:·y: |y1⟩ |y:⟩ =
1√
2n+1

∑
y∈{0,1}n+1

(−1)x·y |y⟩

We used the induction hypothesis in step (†). This completes the proof and shows that the formulation of the
Hadamard gates holds for all n.

2.3. Measurement

We will now discuss the last postulate of QM which is concerned with measurements. The central result
is that measuring a quantum system is inherently probabilistic, i.e., the outcome of a measurement is not
deterministic and truly random. For any quantum state |ψ⟩, the probability of measuring an outcome vi is
given by the absolute-square of the inner product between the “measurement state” |vi⟩ and the state |ψ⟩:

P (i) = |⟨vi|ψ⟩|2.

The value of this inner product (without the absolute-square) is called the probability amplitude and can be
negative or even complex. Immediately after a measurement, the state |ψ⟩ collapses into a post-measurement
state |ψ′⟩. This post-measurement state is ∣∣ψ′〉 = Mi |ψ⟩

Ni

whereMi = |vi⟩⟨vi| and Ni =
√
P (i) are the measurement operator and normalization constant, respectively.

These results are digested in the following postulate.
Postulate 3 (Quantum Measurement). Quantum measurements are described by a collection of measurement
operators {Mi} where i indicated the outcome of the experiment. Let |ψ⟩ be the state before the measurement,
then the state immediately after the measurement is |ψ′⟩ =Mi |ψ⟩ /Ni where N =

√
P (i) is for normalization.

Theorem 5 (Measurement of Pure Quantum States). For pure states |ψ⟩, the post-measurement state |ψ′⟩ after
a measurement of |vi⟩ is |ψ′⟩ = |vi⟩.

Proof.
Mi |ψ⟩
Ni

=
|vi⟩⟨vi| |ψ⟩√

P (i)
=
|vi⟩⟨vi| |ψ⟩√
|⟨vi|ψ⟩|2

=
|vi⟩ ⟨vi|ψ⟩
|⟨vi|ψ⟩|

= |vi⟩
⟨vi|ψ⟩
|⟨vi|ψ⟩|

≡ |vi⟩
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2.4. Composite Systems and Tensor Products

As in classical computing where we are concerned with more than one bit, QC also works with more than one
qubit. The formalism for this are tensor products H2 ⊗H2 between the Hilbert spaces of the individual qubits.
Its basis vectors are also constructed using tensor products:

|0⟩ ⊗ |0⟩ =


1
0
0
0

 |0⟩ ⊗ |1⟩ =


0
1
0
0

 |1⟩ ⊗ |0⟩ =


0
0
1
0

 |1⟩ ⊗ |1⟩ =


0
0
0
1


For two single-qubit operators A =

[
a00 a01
a10 a11

]
and B =

[
b00 b01
b10 b11

]
, the tensor product is carried out as

A⊗B =

[
a00 a01
a10 a11

]
⊗
[
b00 b01
b10 b11

]
=

a00
[
b00 b01
b10 b11

]
a01

[
b00 b01
b10 b11

]
a10

[
b00 b01
b10 b11

]
a11

[
b00 b01
b10 b11

]
 =


a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a11b00 a11b01
a10b10 a10b11 a11b10 a11b11


with some abuse of notation. This definition has the effect of applying unitary A to the first and unitary B to
the second qubit in a tensor-multiplied Hilbert space, i.e.,

(A⊗B)(|ψ⟩1 ⊗ |ψ⟩2) = (A |ψ⟩1)⊗ (B |ψ⟩2)

For brevity, we often write product state as |0⟩ ⊗ |1⟩ .= |0⟩ |1⟩ .= |01⟩ and the application of product operators
as (A⊗B)(|0⟩ ⊗ |1⟩) .= A⊗B |0⟩ ⊗ |1⟩ = A1B2 |01⟩. As long as it is clear which unitary is applied to which
qubit, a variety of notations may be used. For brevity, we also often write |ψ⟩⊗N .

= |ψ⟩ ⊗ · · · ⊗ |ψ⟩︸ ︷︷ ︸
N times

and the

same for gates.

2.4.1. Entanglement

A composite or product state is a state |ψ12⟩ that can be written as the product of two individual states
|ψ1⟩ = α1 |0⟩+ β1 |1⟩ and |ψ2⟩ = α2 |0⟩+ β2 |1⟩:
|ψ12⟩ = |ψ1⟩ ⊗ |ψ2⟩ = (α1 |0⟩+ β1 |1⟩)⊗ (α2 |0⟩+ β2 |1⟩) = α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |10⟩+ β1β2 |11⟩

However, there are states that cannot be written like this!
Definition 2 (Entangled State). A quantum state |ψ12⟩ ∈ H1 ⊗H2 is called entangled if there are no states
|ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2 such that |ψ12⟩ = |ψ1⟩ ⊗ |ψ2⟩.
Theorem 6 (Simple Entangled States). All states |ψθ⟩ = cos θ2 |00⟩+ sin θ

2 |11⟩, θ ∈ (0, π/2] are entangled.
Proof. Let |ψ1⟩ := α1 |0⟩+ β1 |1⟩ and |ψ2⟩ := α2 |0⟩+ β2 |1⟩ with coefficients α1, α2, β1, β2 ∈ C. Assume that
|ψθ⟩ = |ψ1⟩ ⊗ |ψ2⟩. Hence,

|ψθ⟩ = α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |10⟩+ β1β2 |11⟩
!
= cos

θ

2
|00⟩+ sin

θ

2
|11⟩

By comparing coefficients, all of the following must hold: α1α2 ≠= 0, β1β2 ≠= 0, and α1β2 = β1α2 = 0. From
the first two constraints it follows that all coefficients must be non-zero which contradicts the last constraint.
Hence, the state is entangled.

One important special case of this result is the Bell state |Φ+⟩ := 1√
2
(|00⟩+ |11⟩) which we will study further

in chapter 7.
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Multipartite

So far, we only studied entanglement of two parties H1 and H2. However, it is also possible to describe
entanglement between three or more parties. For three parties H1, H2, and H3, there can be a variety of
different entanglements:

|ψ123⟩ = |ψ12⟩ ⊗ |ψ3⟩ |ψ123⟩ = |ψ1⟩ ⊗ |ψ23⟩ |ψ123⟩ = |ψ2⟩ ⊗ |ψ13⟩

For more than two parties, a state |ψ⟩123 that cannot be expressed as a product of its components is called
genuine multipartite entangled (GME). To check whether some state is GME can be done explicitly analogous
to the above proof of two-party entanglement by checking all the above cases along with

|ψ123⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ |ψ3⟩ .

However, for N qubits the (potentially) entangled state has 2N coefficients! The complexity of this checking is
therefore O(scary). There are, however, less straightforward, but easier-to-check procedures for validating
whether a state is GME, but these are out of scope of this course.

Graph States

Although general methods for checking GME is out of scope, we will still look at the most famous example:
graph states. Graph states a multi-qubit states corresponding to the mathematical structure of a graph. Let
G = (V,E) be a graph with vertices V and edges E. Then the corresponding multi-qubit state is

|G⟩ =
∏
e∈E

CZ e |+⟩⊗|V |

where CZ e = diag(1, 1, 1,−1) is a controlled-Z-gate (see subsection 2.4.2) acting on the qubits of the edge.
These graph states allowed for a new language to reason about quantum states. For instance, when measuring
the first qubit of the following graph state in Z-basis,

1

2 3

it just disappears, dropping the connections to the second and third qubit:

2 3

Similar rules exist for other measurements, but these are again out of scope for this course.

2.4.2. Multi-Qubit Gates

So far, we only discussed local gates acting on a single qubit (remember, gates combined with tensor products
are applied on each gate individually). While this already allows some calculations, it does not allow interplay
of multiple qubits or generation of entangled states which are very important for various protocols (see
section 2.5). Hence, we need multi-qubit gates U that cannot be written as the product of local gates, i.e.,
U ̸= U1 ⊗ · · · ⊗ UN .

14



CNOT-Gate The simplest is the CNOT-gate:

|x⟩ • |x⟩
|y⟩ |x⊕ y⟩

CNOT 12 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Input Output

|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

This gate is a controlled gate and applied the X-gate to the second qubit iff the first qubit is 1. The indices
CNOT ij indicate that the gate is acting on the j-th qubit (the target) and controlled by the i-th qubit. This
gate can be extended to more than two qubits (with n− 1 control qubits and a single target). For n = 3, it is
called the Toffoli gate which can be used to represent classical logical operations like logical not, and, or, and
not-and.

SWAP-Gate Another important two-qubit gate is the SWAP-gate

|a⟩ × |b⟩
|b⟩ × |a⟩

|a⟩ • • |b⟩

|b⟩ • |b⟩

which simply switches the state of two qubits. The circuit on the right is the implementation of the SWAP-gate.
Showing their equivalence is straightforward:

|00⟩ CNOT12−→ |00⟩ CNOT21−→ |00⟩ CNOT12−→ |00⟩ |01⟩ CNOT12−→ |01⟩ CNOT21−→ |11⟩ CNOT12−→ |10⟩

|10⟩ CNOT12−→ |11⟩ CNOT21−→ |01⟩ CNOT12−→ |01⟩ |11⟩ CNOT12−→ |10⟩ CNOT21−→ |10⟩ CNOT12−→ |11⟩

As unitary transformations are linear, we almost always only have to show the equivalence for the basis states
as every state can be expressed as a superposition of them. This simplifies a lot of derivations! As the above
circuit implements swapping for the basis states, it is a valid implementation of the SWAP-gate.

Controlled-U-Gate Note that any gate U can be used in a controlled fashion:

|x⟩ • |x⟩

|y⟩ U Ux |y⟩
CU 12 =

[
1 0
0 U

]
To implement this gate in practice, it can be decomposed into CNOT-gates and single-qubit gates (see ??).

Preparing the Bell State Equipped with these tools, we can prepare the Bell state |Φ+⟩ with the following
circuit:

|0⟩ H •

|0⟩
|00⟩ H1−→ 1√

2
(|0⟩+ |1⟩) |0⟩ CNOT12−→ 1√

2
(|00⟩+ |11⟩) =

∣∣Φ+
〉

For brevity, we will write
|0⟩

Φ+

|0⟩
from now on whenever a Bell state is prepared between two qubits. Also, we will leave out the explicit
derivation of the Bell state will from derivations.
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2.5. Protocols

In this section we discuss some essential protocols in QC and the no-cloning theorem. These protocols are not
complete algorithms (which are discussed in chapter 5), but illustrate essential ideas supporting some of the
algorithms.

2.5.1. No-Cloning

While the no-cloning theorem is not really a protocol, it is an extremely important result for QC and thus also
covered here.

Theorem 7 (No-Cloning). Let |ψ⟩ be some state. Then there exists no U such that U |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩. That is,
no circuit exists that copies an arbitrary quantum state.

Proof. Assume that U is a cloning circuit and let |ψ⟩ and |ϕ⟩ be arbitrary states. Then we can compute

(⟨ϕ| ⟨ϕ|)(|ψ⟩ |ψ⟩) = ⟨ϕ|ψ⟩ ⟨ψ|ϕ⟩ = (⟨ϕ|ψ⟩)2.

However, we can also express the composite states as |ϕ⟩ |ϕ⟩ = U |ϕ⟩ |0⟩ and |ψ⟩ |ψ⟩ = U |ψ⟩ |0⟩ using the
definition of the cloning circuit U . Hence,

⟨0| ⟨ϕ|U †U︸︷︷︸
=1

|ψ⟩ |0⟩ = ⟨0| ⟨ϕ|ψ⟩ |0⟩ = ⟨0|0⟩ ⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩ .

Therefore, (⟨ϕ|ψ⟩)2 = ⟨ϕ|ψ⟩ holds. The states |ϕ⟩ and |ψ⟩ are therefore orthogonal, ⟨ϕ|ψ⟩ = 0, or equal,
⟨ϕ|ψ⟩ = 1. This corresponds to classical data (either 0 or 1) and no arbitrary quantum states. Hence, there
exists no such U .

This theorem is a fundamental result of QC and hinders some algorithms down the line. But it is not new! In
fact, the no-cloning theorem is equivalent to Heisenberg’s uncertainty principles stating that for any quantum
system there exist two properties which cannot both be measured with certainty. Proofing this equivalence
would go as follows (proofing both directions using contraposition):

• From no-cloning to Heisenberg: if Heisenberg’s uncertainty principle would be false, we could measure
everything with certainty and thus prepare a second state simply by transferring the measured data,
violating the no-cloning theorem.

• From Heisenberg to no-cloning: if the no-cloning theorem would be false, we could copy an arbitrary
quantum state an arbitrary number of times and thus measure the state with arbitrary precision, violating
Heisenberg’s uncertainty principle.

2.5.2. Quantum Teleportation

With quantum teleportation, it is possible to teleport an arbitrary quantum state from one position to another
(e.g., from Alice’s to Bob’s lab) using entanglement. Both parties (Alice and Bob) previously shared a Bell state
|Φ+⟩ and now Alice wants to transmit her state |ψ⟩ over to Bob, but they cannot meet and have no secure
communication channel. However, Alice can publicly announce two classical bits of information that Bob will
read.
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Consider the following circuit:
|ψ⟩

A′
• H

m2

|0⟩
A

Φ+

m1

|0⟩
B

Xm1 Zm2 |ψ⟩

(2.2)

Note how the state |ψ⟩ is teleported from qubit A to qubit B. Also note that the state is not cloned as Alice’s
measurement destroys her copy. To see that the above circuit actually copies the state, we can simply calculate
what it does to the circuit. Let |ψ⟩ = c0 |0⟩+ c1 |1⟩ be the qubit to be copied. Right before the measurements,
the system has the following state:

(c0 |0⟩+ c1 |1⟩)A′ |00⟩AB
Φ+

AB−→ 1√
2
(c0 |0⟩+ c1 |1⟩)A′(|00⟩+ |11⟩)AB

CNOTA′A−→ 1√
2

(
c0 |0⟩A′ (|00⟩+ |11⟩)AB + c1 |1⟩A′ (|10⟩+ |01⟩)AB

)
HA′−→ 1√

2

(
c0 |+⟩A′ (|00⟩+ |11⟩)AB + c1 |−⟩A′ (|10⟩+ |01⟩)AB

)
=

1

2

(
c0(|0⟩+ |1⟩)A′(|00⟩+ |11⟩)AB + c1(|0⟩ − |1⟩)A′(|10⟩+ |01⟩)AB

)
=

1

2

(
|00⟩A′A (c0 |0⟩+ c1 |1⟩)B + |01⟩A′A (c0 |1⟩+ c1 |0⟩)B

+ |10⟩A′A (c0 |0⟩ − c1 |1⟩) + |11⟩A′A (c0 |1⟩ − c1 |0⟩)B
)

When now measuring the first two qubits, the following outcomes and post-measurement states are present,
and the corresponding corrections have to be applied to recover |ψ⟩:

m1 m2 |ψ′⟩B Correction
0 0 c0 |0⟩+ c1 |1⟩ 1

0 1 c0 |1⟩+ c1 |0⟩ X
1 0 c0 |0⟩ − c1 |1⟩ Z
1 1 c0 |1⟩ − c1 |0⟩ ZX

With U1 = U and U0 = 1, the corrections can be summarized into Zm2Xm1 which are the last two gates of
circuit (2.2).
We therefore teleported a qubit from A to B! Note that this does not allow transmission of information

faster-than-light as the two classical bits have to be transmitted. Without them, the qubit is worthless as Bob
cannot interpret it correctly1. It also does not violate the no-cloning theorem as Alice’s copy is destroyed
during the measurement.

Concatenated Teleportation

2.5.3. Dense-Coding

We are now concerned with the “opposite” problem of qubit teleportation: instead of teleporting a qubit’s
state, we physically transport it to another location but encode two classical bits of information in it. That
1One might argue that Bob might get lucky and read out the correct information. But this kind of “faster-than-light transportation”
is also possible classically: you can just guess what the information is—but does not actually transmit information!
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is, we transmit two bits of classical information by only transmitting a single qubit. Consider the following
circuit:

|0⟩
A

Φ+
U • H m1

|0⟩
B

m2

After creating the Bell state, Alice applies a unitary U ∈ {1, X, Z, ZX} and subsequently transmits the qubit
to Bob. He, now in possession of both qubits A and B, now applies the rest of the gates to read out what
unitary Alice applied. The measurement results are as follows:

U m1 m2

1 0 0
X 0 1
Z 1 0
ZX 1 1

Validating this is analogous to the teleportation and left as an exercise to the reader.
Again, this protocol does not allow faster-than-light communication as the qubit has to be physically

transmitted. A combination with the teleportation protocol is possible, but this in turns requires the classical
transmission of two bits, so still no faster-than-light transmission is possible.

2.6. Why these postulates?

One might ask why the postulates are as is (e.g., Why probabilities in the first place? Why amplitudes and not
real positive numbers? Why the Euclidean norm and not an arbitrary p-norm? Why linearity?). The hard way
to understand this is:

1. learn classical physics

2. learn why classical physics is not sufficient

3. learn quantum physics

4. maybe hear about why amplitudes and not probabilities

However, this course is not the place to squeeze in at least one year worth of lectures just to understand the
postulates. Instead, we will take a more pragmatic approach, starting from why we use the Euclidean norm.

Why the Euclidean Norm? Consider v = (v1, v2, . . . , vN ) describing the probabilities of an event with N
possible outcomes. We impose a condition ∥v|p = 1 to ensure normalization. The most natural choice would
be p = 1, i.e., requiring that the sum of the magnitudes is unity. However, remember that we want to apply
transformations A to the vector and still keep the normalization condition: ∥v∥p = ∥Av∥p = 1. For any p, this
condition only allows permutations vi 7→ vj and sign flips vi 7→ −vi. None of these are capable of encoding
everything interesting! However, for p ∈ {1, 2}, these matrices can encode more things. For p = 1, stochastic
matrices are allows and for p = 2, we can use unitary matrices! For higher p, no interesting behavior can be
encoded. A very practical argument why we use p = 2 is therefore that otherwise QM would be very boring.
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Why Complex Numbers? Again, we can bring up a very practical argument: only complex number are
algebraically closed. Consider, for instance, a unitary gate U . Applying this gate takes t time. If we want
to apply it for only t/2 time, we need to take its square-root U = V V = V 2. With being closed under this
operation, it might be that there is no such gate! But as we are able to apply it for only t/2 time, there must
be some form of square-root-U in the universe. Hence, we have to use complex numbers. Take, for instance,
the gate U = Z = diag(1,−1) =

(
diag(1, i)

)2.
Why Linearity? We always have the assumption that gates progress our state linearly. If it would not, i.e., if
it would progress nonlinearly, we could solve NP-complete problems! But this is unrealistic, so we confine
ourselves to linear evolution. . .

What is Quantum Mechanics About? Quantum mechanics is not about matter, energy, waves, nor particles.
Instead, its solely about information, probabilities, and observables and how these relate to each other!
Whenever seeing two linear operators in QM, the sole answer to whether they commute conveys large
amounts of information.
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3. Computational Complexity

In this chapter we cover the basic ideas of complexity theory. As the core motivation behind QC is to speed up
certain tasks, we first have to lay the ground for discussing what “speed up” actually means. In computer
science, the complex of an algorithm describes the resources required to run it. This resource is often space
or time. That is, how much memory or time it takes to run a specific algorithm. To assign a complexity to
a problem instead of a specific algorithm, we assign say that the problem has the complexity of the best
algorithm solving it.
The most common complexity classes are depicted in Figure 3.1. These are:

• P: problems that are solvable in polynomial time (graph connectivity, testing if a number is prime,
matchmaking, sorting, linear search, . . . )

• Bounded-Error Quantum Polynomial (BQP): problems solvable on a quantum computer with bounded
error probability (e.g., P (error) ≤ 2/3) (factoring, discrete logarithm, . . . ?)

• NP: problems believed to not be solvable in polynomial time (graph isomorphism, . . . )

• NP-complete: hard problems that can be reduced on each other and for which the solution can be
checked in polynomial time (box packing, map coloring, traveling salesman, n× n Sudoku, . . . )

• PSPACE: problems which need polynomial amount of memory (n× n chess, n× n Go, . . . )

These complexity classes are defined such that P ⊆ BQP ⊆ NP ⊆ PSPACE. A big open problem of computer
science is whether P ̸= NP, i.e., whether we can solve all problems “fast.” A similar question comes up for QC:
is P ̸= BQP, i.e., are there problems that can actually be solved faster on a quantum computer?

To assess the complexity of a quantum algorithm, we count the gates required to implement the circuit. We
will see in the next chapter (chapter 4) how this scales with the problem size.
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P BQP NP NP-Complete PSPACE

Figure 3.1.: The Computational Complexity Zoo
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4. Universal Computation

In general, a quantum circuit is just a unitary U and measurements,
|x1⟩

U
|x2⟩

... ...
|xn⟩

with an initialization |x1x2 . . . xn⟩. However, this circuit has to be constructed somehow from gates we have
available in the lab. this raises the natural question of what gates we have to implement to build every
unitary—and whether there are actually a set of gates fulfilling this.
Definition 3 (Universal Set of Gates). A set of gates G is called universal if any unitary can be approximated
with arbitrary accuracy using only gates from this set. With a gate U and its approximation V , let

E(U, V ) = max
|ψ⟩
∥(U − V ) |ψ⟩∥

be the error between U and V . Note that this error is an upper bound on the probability error |PU − PV | ≤
2E(U, V ) quantifying the difference in the probability distributions induced by applying U or V to a state.

Note that is analogous to classical computing. There we could also decompose every algorithm into a set
of universal logical gates. For instance, the sets {AND,OR,NOT } and {NAND } are both universal and can
represent every possible classical circuit. We formulate this into a theorem:
Theorem 8 (Classical Set of Universal Gates). The sets {AND,OR,NOT } and {NAND } and universal for all
classical logic gates.

Proof. By induction.
Theorem 9 (Embedding of Classical Circuits). Every classical circuit can be embedded in a quantum circuit
performing the equivalent operation, but reversibly.

Proof. To proof this, we use that {AND,NOT,OR } is universal for all classical gates (Theorem 8). We therefore
only have to show that these gates can be resembled using quantum circuits. For this, we use the X-, CNOT-,
and Toffoli-gate:

|x⟩ • |x⟩

|y⟩ • |y⟩

|0⟩ |x ∧ y⟩

|x⟩ • |y⟩

|1⟩ |¬x⟩

|x⟩ X • X |x⟩

|y⟩ X • X |y⟩

|1⟩ |x ∨ y⟩

Showing the equivalence is trivial. Note that in the logical or, the Toffoli-gate functions as a not-and due to
the target qubit being set to |1⟩.
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4.1. Universal Quantum Gates

In this section we will go over the proof of universality. Some common groups of quantum gates that are
discussed are, for instance, the Pauli group P = ⟨X,Z⟩ from which all the Pauli-gates can be constructed:

⟨X,Z⟩ −→ {X2 = Z2 = 1, X,XZ = iY, ZX = −iY, Z} ≡ {1, X, Y, Z}.

Another important group is the Clifford group C = ⟨H,S,CNOT ⟩ with

⟨H,S,CNOT ⟩ −→ {H2 = 1, S2 = Z, . . . }.

However, we have the following result:
Theorem 10 (Gottesman-Knill Theorem). Circuits build using solely gates from the Clifford group can be
efficiently simulated on a classical computer.

Hence, the Clifford group is not enough as we will never see a speedup when just using its gates! However,
if we add the T-gate T = diag(1, eiπ/4), we get a universal set of gates:
Theorem 11 (Universal Set of QuantumGates). The following set of quantum gates is universal: ⟨H,S,CNOT , T ⟩.

Proof Sketch. The proof of this theorem has three parts:
1. every unitary matrix can be decomposed into the product of two-level1 unitary matrices
2. every two-level unitary matrix can be decomposed into CNOT- and single-qubit gates
3. every single-qubit gate can be approximated with arbitrary accuracy by ⟨H,T ⟩

which we will cover in greater detail.
Part 1/3: For an n-qubit gate U , at most 2n−1(2n − 1) ∈ O(4n) two-level unitary matrices are needed.
Part 2/3: Let Ũ ∈ C2n+1×2n+1 be a two-level unitary matrix acting on n+ 1 qubits. Assume w.l.o.g. that

Ũ is a block diagonal matrix Ũ = diag(1, U), where U ∈ C2×2 contains the four non-trivial entries of Ũ .
Hence, Ũ is a the n-controlled version of U , i.e., U is only applied to the (n + 1)-th qubit iff the first n
qubits are 1. To show that this gate can be constructed using just single-qubit gates and CNOT-gates, we
first construct a controlled-U-gate, then a controlled-controlled-U-gate, and subsequently expand this to an
n-controlled-U-gate.

Let U =: eiαAXBXC be a decomposition of U such that ABC = 1 (note that this is always possible due to
Theorem 3). The following circuit implements a controlled-U-gate:

• • E

C B A

with E := diag(1, eiα). For |0x⟩, both E and the CNOT-gates have no effect and therefore due to ABC = 1,
the state is left as is. For |1x⟩, both E and the CNOT-gates are applied and therefore the unitary CXBXA
acts on the second qubit together with the global phase eiα, which is equivalent to applying U . Similarly,

• • E†

A† B† C†

1A two-level unitary matrix is a matrix that only acts non-trivially on at most two vector components.
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implements the controlled-U †-gate necessary for the next step (the proof is analogous).
The controlled-controlled-U-gate is realized by

• • •
• •

V V † V

(4.1)

with V being the half-U-gate, i.e., V 2 = U . For |00x⟩, no gate is ever applied. For |01x⟩, V and V † are applied,
canceling each other out. For |10x⟩, V † and V are applied, canceling each other out. For |11x⟩, however, both
V but not V † are applied (due to the CNOT-gates canceling the activation on the second qubit), resulting in
V V = V 2 = U being applied to the this qubit. Hence, this circuit realizes the controlled-controlled-U-gate. By
some clever arrangement, this circuit needs eight single-qubit gates and six CNOT-gates.
To build the n-controlled-U-gate, we add the new control bits to the front and expand the control lines of

(4.1) to these qubits, using an (n− 1)-controlled-gate. Finally, we end up using O(n2) CNOT- and single-qubit
gates.
Part 3/3: By the Solovay-Kitaev theorem, approximating a circuit with m CNOT- and single-qubit up to an

accuracy ϵ requires O(m log2(m/ϵ)
) gates from ⟨H,T ⟩.

This concludes the proof sketch and we end up with

O

(
4n2n log2

(
4n2n

ϵ

))

gates to approximate an arbitrary n-qubit quantum circuit.

From this discussion and the final gate count that scales exponentially with the number of qubit, it does not
appear clear why anyone should think that BQP ̸= P. Even classical circuits need an exponential amount of
time on a quantum computer! This is the reason why algorithms that are efficient on a quantum computer are
rare and require a large amount of creativity. The next chapter covers nearly all quantum algorithms that we
know so far, which only reinforces the argument how much creativity is necessary to invent new ones.
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5. Algorithms

After discussing basic protocols and results in section 2.5, we will now go over actual algorithms. After a
discussion of the main idea underlying all algorithms, quantum parallelism, in section 5.1, we will cover the
following algorithms:

• Deutsch-Josza Algorithm (section 5.2)
Finds out whether a function is constant or balanced. Main purpose is to show quantum speedup
compared to deterministic classical computing. Exponential speedup, but efficiently solvable on a
probabilistic classical computer.

• Bernstein-Vazirani Algorithm (section 5.3)
Finds a binary string hidden in a special function. Main purpose is to show quantum speedup compared
to probabilistic classical computing. Linear speedup.

• Simon’s Algorithm (section 5.4)
Finds the periodicity of a 2-to-1-function. Exponential speedup!

• Quantum Fourier Transform (section 5.5)
Finds the periods hidden in data; quantum version of the famous Fourier transform. Exponential
speedup!

• Shor’s Algorithm (section 5.6)
Factors two large numbers; can be used to break RSA encryption. Almost exponential speedup.

• Grover’s Algorithm (section 5.7)
Finds a value in an unstructured1 pool of values. Square-root speedup.

A brief overview over the most important aspects of each algorithm is given in Table 5.1, but I recommend to
first work through this chapter and then take a look at the table.
1Here, unstructured refers to the search space which has no special structure, e.g., being sorted which would allow efficient classical
algorithms such as binary search.

Name Tackled Problem Classical Complexity Quantum Complexity

Deutsch-Josza Algorithm Deutsch’s Problem O(2n) O(1)
Bernstein-Vazirani Algorithm Hidden String O(n) O(1)
Simon’s Algorithm Simon’s Problem O(2n) O(n)
Quantum Fourier Transform Fourier Transform O(2n) O(n2)
Shor’s Algorithm Factoring O(elogN ) O

(
(logN)3

)
Grover’s Algorithm Unstructured Search O(N −M) O(

√
N/M)

Table 5.1.: Quantum Algorithms
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5.1. Quantum Parallelism

In chapter 4, we saw that it is possible to implement arbitrary circuits on a quantum computer. However, expo-
nentially many gates where necessary! So what is the reason why we think that QC accelerates computation?
Classically, we can evaluate some function only one input at a time. In QC, however, we can make use of the
linear evolution. We can therefore prepare a superposition, apply the query unitary, and therefore evaluate it
on all 2n inputs simultaneously. For brevity, we denote quantum wires containing more than one qubit as

|0⟩n / H / U /

or will simply keep the multi-qubit wire implicit. However, we can not use the calculation of this circuit as
we do not know which input produced which output! We therefore have to come up with a better approach
based on interference.

5.1.1. Interference and Deutsch’s Approach

Consider a function f : {0, 1}n → {0, 1} : x 7→ f(x) with the unitary Uf : |x⟩ |y⟩ 7→ |x⟩ |y ⊕ f(x)⟩ (we will
proof that this is in fact a unitary transformation in subsection 5.1.2). In circuit notation, we write:

|x⟩n
Uf

|x⟩n

|y⟩ |y ⊕ f(x)⟩

This circuit keeps the inputs and the outputs together! We can now make use of superposition,
|0⟩n / H /

Uf
/

|0⟩

which produces the following output:

|0⟩n |0⟩ H1:n−→ 1√
2n

(|0⟩+ |1⟩)⊗n ⊗ |0⟩
Uf−→ 1√

2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩

We have now evaluated f with just one call for all possible inputs! However, we cannot read all the results as
a measurement would collapse the superposition onto just one evaluation and we could have just called the
classical implementation. Hence, we need a slightly different approach to quantum parallelism.

Assume n = 1, i.e., a single input qubit. Then Deutsch’s approach is to also use a superposition as the “input”
for the target qubit and to apply a second Hadamard gate after the unitary on the input qubit:

|0⟩ H
Uf

H

|1⟩ H

(5.1)

The core idea is now how Uf acts an the product state of a basis state |x⟩ and |−⟩:

Uf

(
|x⟩ ⊗ 1√

2
(|0⟩ − |1⟩)

)
= |x⟩ ⊗ 1√

2
(|0⊕ f(x)⟩ − |1⊕ f(x)⟩)

= |x⟩ ⊗ 1√
2

{
|0⟩ − |1⟩ if f(x) = 0

|1⟩ − |0⟩ if f(x) = 1

= (−1)f(x) |x⟩ ⊗ 1√
2
(|0⟩ − |1⟩)
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This shows that we can pull the result of f(x) from the second qubit and put it to a global phase! We can now
continue the evaluation of (5.1):

(H ⊗ 1)Uf (H ⊗H) |0⟩ |1⟩ = (H ⊗ 1)Uf
[

1√
2
(|0⟩+ |1⟩)⊗ (|0⟩ − |1⟩)√

2

]
= (H ⊗ 1) 1√

2
Uf

[
|0⟩ ⊗ (|0⟩ − |1⟩)√

2
+ |1⟩ ⊗ (|0⟩ − |1⟩)√

2

]
= (H ⊗ 1) 1√

2

[
(−1)f(0) |0⟩ ⊗ (|0⟩ − |1⟩)√

2
+ (−1)f(1) |1⟩ ⊗ (|0⟩ − |1⟩)√

2

]
= (H ⊗ 1) 1√

2

[
(−1)f(0) |0⟩+ (−1)f(1) |1⟩

]
⊗ (|0⟩ − |1⟩)√

2

= (H ⊗ 1) 1√
2

{
±(|0⟩+ |1⟩) if f(0) = f(1)

±(|0⟩ − |1⟩) if f(0) ̸= f(1)
⊗ (|0⟩ − |1⟩)√

2

=

{
± |0⟩ if f(0) = f(1)

± |1⟩ if f(0) ̸= f(1)
⊗ (|0⟩ − |1⟩)√

2

= ± |f(0)⊕ f(1)⟩ ⊗ (|0⟩ − |1⟩)√
2

≡ |f(0)⊕ f(1)⟩ ⊗ (|0⟩ − |1⟩)√
2

Finally, we can measure the first qubit. But we did still not read out evaluations of f ! It turns out that in QC,
we can often not read out individual results, but global properties of functions. In this case, a measurement 0
means that our function is constant and 1 that it is not. Also, we did not use the target qubit in the end—it
was only useful for transferring function results into the global phase. In fact, we usually apply a Hadamard
gate to it in the end to restore the original state. Hence, the entire “algorithm” of Deutsch’s approach is:

|0⟩ H
Uf

H |f(0)⊕ f(1)⟩

|1⟩ H H |1⟩

(5.2)

This approach uses quantum parallelism and interference to learn a global property of f . All subsequent
algorithms will rely on this or a similar technique for their speedup along with massive classical post-processing
in some cases.

5.1.2. The Query Unitary

So far, we have just assumed that Uf : |x⟩ |y⟩ 7→ |x⟩ |y ⊕ f(x)⟩ is a unitary transformation for any function f .
In this section we will see that this is actually the case and how Uf looks.

Theorem 12 (Query Unitary). Let f : {0, 1}n → {0, 1} : x 7→ f(x) be some function. Then the mapping
Uf : |x⟩ |y⟩ 7→ |x⟩ |y ⊕ f(x)⟩ is unitary.

Proof. We proof this by constructing Uf . Let i, k ∈ {0, 1}n and j, ℓ ∈ {0, 1}, then the (ij, kℓ)-th matrix element
of Uf is

⟨j|⟨i|Uf |k⟩|ℓ⟩ = ⟨j| ⟨i|
(
Uf |k⟩ |ℓ⟩

)
= ⟨j| ⟨i|

(
|k⟩ |ℓ⊕ f(k)⟩

)
= ⟨i|k⟩ ⟨j|ℓ⊕ f(k)⟩ = δi,kδj,ℓ⊕f(k).
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From this we see that the matrix Uf is block-diagonal w.r.t. the first n qubits. The ik-th block (which we can
also call the i-th or k-th block as the matrix is diagonal) is then

(Uf )ik =

[
δ0,0⊕f(k) δ0,1⊕f(k)
δ1,0⊕f(k) δ1,1⊕f(k)

]
=

[
δ0,f(k) δ0,1⊕f(k)
δ1,f(k) δ1,1⊕f(k)

]
=

[
δ0,f(k) δ1,f(k)
δ1,f(k) δ0,f(k)

]
.
=

[
mk 1⊕mk

1⊕mk mk

]
with mk := δ0,f(k). As mk is constant within the k-th block, it is either 1 or X for f(k) = 0 or f(k) = 1,
respectively. As a block-diagonal matrix of unitary matrices is still unitary, Uf is unitary for every f .

5.2. Deutsch-Josza Algorithm

In this section we explore the Deutsch-Josza algorithm used to solve Deutsch’s problem. We first describe the
problem, then the classical solution, and finally the quantum approach. Alongside we discuss complexity
arguments and run-time.

5.2.1. Problem

Assume a function f : {0, 1}n → {0, 1} that is either constant or balanced, i.e., f(x) = a for all x or f(x) = 0
for half x and f(x) = 1 for the other half. We want to find out which of these cases f falls into, i.e., whether f
is constant or balanced. This problem is also called Deutsch’s problem.

5.2.2. Classical Approach

To determine with certainty whether a given function (of n bits) is constant or balanced, we need to evaluate
it for one more than half the inputs. That is, 2n−1 + 1 times. The classical algorithm is therefore in O(2n).

5.2.3. Quantum Approach

For solving Deutsch’s problem in a quantum way, we directly apply Deutsch’s approach (5.2) with a unitary
Uf implementing f . This yields the following state (while dropping the last qubit as its state does not convey
information) before the final Hadamard-layer:

1√
2n
H⊗n

∑
x

(−1)f(x) |x⟩ (5.3)

We now have two cases: either f is constant or f is balanced. We first consider the first (constant) case. Then
the above state reduces to

1√
2n
H⊗n

∑
x

(−1)f(x) |x⟩ = ± 1√
2n
H⊗n

∑
x

|x⟩ = ±H⊗n |+⟩⊗n = ± |0⟩⊗n ≡ |0⟩⊗n .
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We now turn to the second case, a balanced f . For this, we separate the x’s into x′ and x′′ which are the values
for which f(x′) = 0 and f(x′′) = 1, respectively. Using (4), we can write the state (5.3) as

1√
2n
H⊗n

∑
x

(−1)f(x) |x⟩ = 1√
2n
H⊗n

[∑
x′

∣∣x′〉−∑
x′′

∣∣x′′〉]
=

1

2n

[∑
x′

∑
y

(−1)x′·y |y⟩ −
∑
x′′

∑
y

(−1)x′′·y |y⟩
]

=
1

2n

∑
y

[∑
x′

(−1)x′·y −
∑
x′′

(−1)x′′·y
]
|y⟩

=
1

2n

([∑
x′

(−1)0 |y⟩ −
∑
x′′

(−1)0 |y⟩
]
+
∑
y ̸=0

[∑
x′

(−1)x′·y −
∑
x′′

(−1)x′′·y
]
|y⟩

)

=
1

2n

([∑
x′

|y⟩ −
∑
x′′

|y⟩
]
+
∑
y ̸=0

[∑
x′

(−1)x′·y −
∑
x′′

(−1)x′′·y
]
|y⟩

)

=
1

2n

∑
y ̸=0

[∑
x′

(−1)x′·y −
∑
x′′

(−1)x′′·y
]
|y⟩

and remove |0⟩⊗n! Hence, it is impossible to measure all zeros for a balanced function and we can therefore
deduce the following rules:

• if all measurement outcomes are zero, f is constant

• if any measurement outcome is one, f is balanced

Opposed to the classical algorithm which needed 2n−1 +1 calls of f , the Deutsch-Josza algorithm only needed
a single call and is therefore in O(1).

5.2.4. Remarks

We saw that the Deutsch-Josza algorithm provides an exponential speedup over the classical solution. This
gives a good start for QC and shows that we may actually be faster than classical computing given that we come
up with a clever algorithm. However, it turns out that Deutsch’s problem as absolutely no real applications
and that probabilistic classical computers can also do a pretty good job at solving it.
The algorithm is summarized in algorithm 1.

5.2.5. Modified Deutsch-Josza Algorithm

5.3. Bernstein-Vazirani Algorithm

In this section we explore the Bernstein-Vazirani algorithm used to extract a hidden string from a function.
We first describe the problem, then the classical solution, and finally the quantum approach. Alongside we
discuss complexity arguments and run-time.
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Algorithm 1: Deutsch-Josza Algorithm
Input: constant or balanced function f : {0, 1}n → {0, 1}
Output: whether the function is constant or balanced
// Run quantum circuit.

1 |0⟩⊗n H
Uf

H x

|1⟩ H H

2 if all x are zero then
3 return “constant”
4 return “balanced”

5.3.1. Problem

Assume a function f : {0, 1}n → {0, 1} that is either constant or balanced, i.e., f(x) = a for all x or f(x) = 0
for half x and f(x) = 1 for the other half. We want to find out which of these cases f falls into, i.e., whether f
is constant or balanced. This problem is also called Deutsch’s problem.
Assume a function f : {0, 1}n → {0, 1} that hides a bit string s ∈ {0, 1}n as follows:

f(x) = x · s = x1s1 ⊕ x2s2 ⊕ · · · ⊕ xnsn.

The goal of the problem is to find s with as few calls of f as possible.

5.3.2. Classical Approach

Classically, we would need n evaluations of f on the basis vectors, i.e., f(ej) = sj and the classical solution is
therefore O(n).

5.3.3. Quantum Approach

For the quantum approach, we again directly apply Deutsch’s approach (5.2) with a unitary Uf implementing
f . Before the final Hadamard-layer, we now have the following state (dropping the last qubit as it does not
convey any information):

1√
2n

∑
x

(−1)f(x) |x⟩

As before, it boils down to cleverly manipulating the state to find an interpretation of the measurement
outcomes. We now plug in the definition of f (and replace the module-two-sum with an actual sum as we are
only using the result in an exponent of −1). By cleverly using power rules and rearranging sum and tensor
product, we find that the state is:

1√
2n

∑
x

(−1)f(x) |x⟩ = 1√
2n

∑
x

(−1)
∑n

i=1 xisi |x⟩ = 1√
2n

∑
x

n⊗
i=1

(−1)xisi |xi⟩i

=
1√
2n

n⊗
i=1

∑
xi

(−1)xisi |xi⟩i =
1√
2n

n⊗
i=1

|0⟩i + (−1)si |1⟩i =
n⊗
i=1

{
|+⟩i if si = 0

|−⟩i if si = 1

And if we apply the Hadamard-gate again, we simply get the state |s⟩! Measuring therefore reveals s with
certainty. Much like in the Deutsch-Josza algorithm, we only need a single invocation of Uf and therefore this
algorithm is also in O(1).
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5.3.4. Remarks

We saw that the Bernstein-Vazirani algorithm provides a linear speedup over the classical solution. While the
applications of this algorithm are still fairly limited, it gives rise to some ideas that will become useful later on.
Also, the hidden string problem is not efficiently solvable on classical computers, also probabilistic classical
computers!
The algorithm is summarized in algorithm 2.

Algorithm 2: Bernstein-Vazirani Algorithm
Input: function f : {0, 1}n → {0, 1} : x 7→ x · s with a hidden string s ∈ {0, 1}n
Output: the hidden string s
// Run quantum circuit.

1 |0⟩⊗n H
Uf

H s

|1⟩ H H

2 return s

5.4. Simon’s Algorithm

From this section on, the algorithms becomemore involved. Most notable, we will need classical post-processing
to make sense of the measurements. The first algorithm of this kind is Simon’s algorithm which solves Simon’s
problem (which, as usual, will be introduced before looking at any approaches). Also, it is the first algorithm
that gives us the solution only up to some probability.

5.4.1. Problem

In Simon’s problem we again try to find a string a ∈ {0, 1}n hidden in a function f : {0, 1}n → {0, 1}n.
However, we assume that f is a two-to-one-function such that f(x) = f(y) iff x = y ⊕ a where ⊕ denotes
bit-wise addition. We are therefore trying to find a period a of a function f under bit-wise addition such that
f(x⊕ a) = f(x).

5.4.2. Classical Approach

Classically, we evaluate f at various different inputs and compare the result to the previous results. If we find
a match, we can directly compute the period a. If we do not find a match on the j-th evaluation, we have
eliminated

1 + 2 + · · ·+ (j − 1) = j(j − 1)/2

possible values of a. This is due to our choice of the inputs: we always choose different values and compare
the output to all lower. In the first iteration, we cannot compare to anything. In the second, we eliminate one
a. In the third, we eliminate two others, and so on. As there are 2n − 1 possible choices of a, we do not have
an acceptable probability of finding a as long as j(j − 1)/2≪ 2n. Hence, we need around j =

√
2n iterations!

Therefore, the classical approach is in O(
√
2n).

31



5.4.3. Quantum Approach

As mentioned already is the quantum approach to Simon’s problem—Simon’s algorithm—more complicated
than both Deutsch-Josza and Bernstein-Vazirani and requires classical post-processing. We therefore split up
this section into the quantum circuit and the classical post-processing.

Circuit

Opposed to the previous two algorithms, we do not directly apply Deutsch’s approach. Instead, we only put
the first n qubits into a superposition and use zero-qubits for the targets:

|0⟩n H
Uf

H y

|0⟩n

After the Uf -gate, we have the state

|0⟩n |0⟩n H⊗n

−→ |+⟩n |0⟩n =
1√
2n

∑
x

|x⟩ |0⟩n
Uf−→ 1√

2n

∑
x

|x⟩ |f(x)⟩ = 1√
2n

∑
xi

|xi⟩+ |xi ⊕ a⟩
2

|f(xi)⟩

where the sums over x are over all n-bit binary strings and the last sum (over xi) is over the individual values
producing distinct values f(xi). As f is a two-to-one function where f(x) = f(x⊕ a) for a constant a, we can
pull in this second value explicitly by adding a. By now measuring the target qubits (the ones storing the
result of f), we collapse the first n qubits onto a state containing only one xi and its “periodic equivalent”:

1√
2
(|xi⟩+ |xi ⊕ a⟩).

Note that while this seems great at a first glance, we cannot directly extract a from this state as we can only
measure once, giving us either xi or xi ⊕ a, and we cannot guarantee to end up in this state again by just
repeating this experiment (as we might collapse onto a different f(x)). By no-cloning, we can also not just
copy the state and just repeating until we get the same outcome again would reduce the quantum approach
to the classical approach, but with the overhead of buying a quantum computer.
We therefore have to do some more work. Using the idea of Deutsch’s approach again (interference) and

applying H with Theorem 4, we can pull the computation results into a phase (we drop the index ·i here for
brevity) and remove x from the parts “that matter”:

1√
2
H⊗n(|xi⟩+ |xi ⊕ a⟩) =

1√
2n+1

∑
y

[
(−1)x·y + (−1)(x⊕a)·y

]
|y⟩

=
1√
2n+1

∑
y

[
(−1)x·y + (−1)x·y(−1)a·y

]
|y⟩

=
1√
2n+1

∑
y

(−1)x·y
[
1 + (−1)a·y

]
|y⟩

=
1√
2n+1

∑
y

(−1)x·yδa·y,0 |y⟩ =
1√
2n−1

∑
y, a·y=0

(−1)x·y |y⟩

After applying the Hadamard gate, we are only left with an equal superposition of y’s that have the property of
a ·y = 0 which there are 2n−1 many. We quickly want to give an argument why thus number is correct. Assume

32



w.l.o.g.2 that the last bit of a is one, i.e., a has the form a = a1a2 . . . an−11 with arbitrary a1, a2, . . . , an−1.
Then the first n − 1 bits of y = y1y2 . . . yn−1yn can be freely chosen from {0, 1} and the last bit has to be
yn = a1y1 ⊕ a2y2 ⊕ · · · ⊕ an−1yn−1. Therefore, we have 2n−1 possible y’s.

Measuring the first n qubits at this point yields us one y that fulfills the constraint a ·y = 0. By repeating this
procedure m times, we get m constraint on a and what remains is some classical post-processing to determine
a.

Post-Processing

As we saw in the previous section, after the quantum part we end up with m constraints

a · y1 = 0 a · y2 = 0 · · · a · ym = 0

on the period a. However, if yi is zero, we do not learn anything about a and if yi = yj for i ̸= j, we also do
not learn anything new. But as there are exponentially many y’, we have3

P (yi = 0 ∨ yi = yj) =
1

2n−1
≈ 0.

Hence, we have a high chance of learning something about a with each measurement and every time we learn
something, we half the number of possible a’s (cf. classically where we only get a linear reduction) and we
need n distinct non-zero values to uniquely determine a. Overall, we have the following theorem:

Theorem 13 (Simon’s Algorithm). The probability p of acquiring enough information to uniquely determine a
with n+m invocations satisfies

p > 1− 1

2m+1
.

Proof. See Mermin, 2016, Appendix G.

Hence, with m = 20, the odds of finding a are one to more than a million. Hence, Simon’s algorithm is in
O(n).

5.4.4. Remarks

We saw that Simon’s algorithm provides an exponential speedup over the classical solution. And while
applications of Simon’s problem are rare, its main contribution to QC was motivating the ideas behind Shor’s
algorithm which has very practical applications and which we will discuss in section 5.6 after covering quantum
Fourier transform (QFT) in section 5.5.
The algorithm is summarized in algorithm 3.

5.5. Quantum Fourier Transform

For Shor’s algorithm (section 5.6), we will need a quantum version of the famous Fourier transform, quantum
Fourier transform (QFT). in this section we will see how we can implement this transform and what it
complexity is compared to the classical Fourier transform. We define the QFT as follows:
2As a ̸= 0, at least one bit must be one and we can just reorder our bits.
3Note that with a similar probability we might get two measurement outcomes during the first measurement that equal each other
and with a 50% chance we get the second value of y and can instantly deduce a. But this probability is very low.
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Algorithm 3: Simon’s Algorithm
Input: two-to-one function f : {0, 1}n → {0, 1}n with the property f(x) = f(x⊕ a) for a constant

period a ∈ {0, 1}n; number of additional calls m
Output: the period a

1 Y ← {} // Prepare the sample set.
2 foreach i = 1, 2, . . . , n+m do

// Run quantum circuit.
3 |0⟩n H

Uf
H yi

|0⟩n

// Rule out uninforming zeros and duplicates.
4 if yi ̸= 0 and yi ̸∈ Y then
5 Y ← Y ∪ {yi} // Add “meaningful” sample to the sample set.

6 a∗ ← solvea
{
a · yi

∣∣ i = 1, 2, . . . , n+m
} // Gauss-Jordan Elimination

7 return a∗

Definition 4 (Quantum Fourier Transform). The quantum Fourier transform of an arbitrary state |j⟩ of an
orthonormal basis |0⟩ , |1⟩ , . . . , |2n − 1⟩ is a linear transformation such that

|j⟩ UFT−→ 1√
2n

2n−1∑
k=0

e2πijk/2
n |k⟩ (5.4)

where j and k are the decimal representations of their binary counterpart, i.e., “actual” numbers. On an
arbitrary state |x⟩, the action is

2n−1∑
j=0

xj |j⟩
UFT−→

2n−1∑
k=0

yk |k⟩ with yk =
1√
2n

2n−1∑
j=0

xje
2πijk/2n .

Before implementing a circuit implementing QFT, we first want to show that the operator is actually unitary:
Theorem 14. The quantum Fourier transform as defined in 4 is a unitary transformation.
Proof. Let |α⟩ and |β⟩ be arbitrary basis states (of the same basis). To show that UFT is a unitary transformation,
it is enough to show that the transformed basis states are still orthonormal. This is due to

⟨α|U †
FTUFT |β⟩ = ⟨α|U †

FTUFT︸ ︷︷ ︸
=1

|β⟩ = ⟨α|β⟩ = δαβ

and U †
FTUFT = 1 holding if and only if UFT is unitary. We proceed by calculating the first inner product (and

applying UFT according to its definition):

⟨α|U †
FTUFT |β⟩ =

1

2n

(
2n−1∑
k1=0

e−2πiαk1/2n ⟨k1|

)(
2n−1∑
k2=0

e2πiβk2/2
n |k2⟩

)

=
1

2n

2n−1∑
k1=0

2n−1∑
k2=0

e−2πiαk1/2ne2πiβk2/2
n ⟨k1|k2⟩ =

1

2n

2n−1∑
k1=0

2n−1∑
k2=0

e−2πiαk1/2ne2πiβk2/2
n
δk1k2

=
1

2n

2n−1∑
k=0

e−2πiαk/2ne2πiβk/2
n
=

1

2n

2n−1∑
k=0

e2πi(α−β)k/2
n
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We now have to continue the proof piecewise. For α = β, the inner product is obviously 1. For α ̸= β, the sum
is a special case of Theorem 1 with a ≜ α− β and n ≜ 2n and therefore it is equal to zero. Hence, the basis
states keep their orthonormality and UFT is indeed a unitary transformation.

We now continue with building the circuit implementing QFT.
Note that this “algorithm” is different from the previous ones in that we do not go over the classical discrete

Fourier transform. We will just use the result of the QFT during the discussion of Shor’s algorithm.

5.5.1. Binary Fraction Expansion

To build the QFT circuit, we first rewrite (5.4) a bit using the notation |j⟩ = |j1j2 . . . jn⟩ with j =∑n
i=1 ji2

n−i

and the recursively defined binary fraction

0.j :=
j

2
0.j1j2j3 . . . jn :=

j1
2

+
1

2
0.j2j3 . . . jn (5.5)

which can also be written as
0.j1j2 . . . jn =

n∑
i=1

ji
2i
.

The that it is the order and not the indices of the arguments that matter here! This is why the recursive
definition is clearer. With these notations at hand, we have the following result:

Theorem 15 (Binary Fraction Expansion of QFT). The QFT result (4) can be expressed as follows:

|j1j2 . . . jn⟩
UFT−→ 1√

2n

((
|0⟩+ e2πi0.jn |1⟩

)
⊗
(
|0⟩+ e2πi0.jn−1jn |1⟩

)
⊗ · · · ⊗

(
|0⟩+ e2πi0.j1j2...jn |1⟩

))
using binary fractions (5.5).

Proof. As usual, we show this equivalence by clever manipulation of the state. For brevity, we drop the
normalization constant as it stays the same anyway. By rearranging and using the definition of exponents, we
have

2n−1∑
k=0

e2πijk/2
n |k⟩ =

∑
k1

∑
k2

· · ·
∑
kn

e2πij
∑n

ℓ=1 kℓ2
n−ℓ/2n |k1k2 . . . kn⟩

=
∑
k1

∑
k2

· · ·
∑
kn

e2πij
∑n

ℓ=1 kℓ2
−ℓ |k1k2 . . . kn⟩ =

∑
k1

∑
k2

· · ·
∑
kn

n⊗
ℓ=1

e2πijkℓ2
−ℓ |kℓ⟩ =: (∗).
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We now pull the sums into the tensor product one by one and add them explicitly:

(∗) =
∑
k1

∑
k2

· · ·
∑
kn−1

n⊗
ℓ=1

e2πijkℓ2
−ℓ |kℓ⟩ ⊗

[∑
kn

e2πijkn/2
n |kn⟩

]

=
∑
k1

∑
k2

· · ·
∑
kn−1

n⊗
ℓ=1

e2πijkℓ2
−ℓ |kℓ⟩ ⊗

[
e2πij·0/2

n |0⟩+ e2πij·1/2
n |1⟩

]
=
∑
k1

∑
k2

· · ·
∑
kn−1

n⊗
ℓ=1

e2πijkℓ2
−ℓ |kℓ⟩ ⊗

[
|0⟩+ e2πij/2

n |1⟩
]

=
∑
k1

∑
k2

· · ·
∑
kn−2

n⊗
ℓ=1

e2πijkℓ2
−ℓ |kℓ⟩ ⊗

[
|0⟩+ e2πij/2

n−1 |1⟩
]
⊗
[
|0⟩+ e2πij/2

n |1⟩
]

= · · ·

=
n⊕
ℓ=1

[
|0⟩+ e2πij2

−ℓ︸ ︷︷ ︸
αℓ:=

|1⟩
]

But this is till not the form we desire! We have to rearrange phases of the |1⟩’s more:

αℓ = e2πij2
−ℓ

= e2πi
∑n

m=1 jm2n−m2−ℓ
= e2πi

∑n
m=1 jm2n−m−ℓ

=
n∏

m=1

e2πijm2n−ℓ−m

In this product, however, all terms with m ≤ n − ℓ are 1 as 2n−ℓ−m ∈ N0 for m ≤ n − ℓ and therefore they
disappear from the product:

n∏
m=1

e2πijm2n−ℓ−m
=

n∏
m=n−ℓ+1

e2πijm2n−ℓ−m
= e2πi

∑n
m=n−ℓ+1 jm2n−ℓ−m .

= e2πi0.jn−ℓ+1jn−ℓ+2...jn

As the last equivalence is a bit hard to see, consider ℓ = 1, ℓ = 2, and ℓ = n explicitly:
• ∑n

m=n−1+1 jm2
n−1−m =

∑n
m=n jm2

n−1−m = jn/2 = 0.jn

• ∑n
m=n−2+1 jm2

n−2−m =
∑n

m=n−1 jm2
n−2−m = jn−1/2 + jn/4

• ∑n
m=n−n+1 jm2

n−n−m =
∑n

m=1 jm2
−m = j1/2 + j2/4 + · · ·+ jn/2

n

Plugging everything together, we have the result that we wanted to show.

5.5.2. Quantum Circuit

As the QFT is not simply an application of a unitary (or at least we do not want to use a bruteforce approach
to generate it), we need to consider the qubits individually. First, we show that

|j1⟩ H R2 · · · Rn−1 Rn · · · |J1⟩

|j2⟩ • · · · H · · · Rn−2 Rn−1 |J2⟩

|jn−1⟩ · · · • · · · • H R2 |Jn−1⟩

|jn⟩ · · · • · · · • • H |Jn⟩

(5.6)

36



produces the following states (with Rk := diag(1, e2πi/2
k
)):

|J1⟩ =
1√
2

(
|0⟩+ e2πi0.j1j2...jn−1jn |1⟩

)
|J2⟩ =

1√
2

(
|0⟩+ e2πi0.j2...jn−1jn |1⟩

)
|Jn−1⟩ =

1√
2

(
|0⟩+ e2πi0.jn−1jn |1⟩

)
|Jn⟩ =

1√
2

(
|0⟩+ e2πi0.jn |1⟩

) (5.7)

For the first qubit, we have

|j1j2 . . . jn−1jn⟩
H1−→ 1√

2

(
|0⟩+ (−1)j1︸ ︷︷ ︸

=eπij1=e2πij1/2

|1⟩
)
|j2 . . . jn−1jn⟩ =

1√
2

(
|0⟩+ e2πi0.j1 |1⟩) |j2 . . . jn−1jn⟩

CR2−→ 1√
2

(
|0⟩+ e2πi0.j1e2πij2/4 |1⟩

)
|j2 . . . jn−1jn⟩ =

1√
2

(
|0⟩+ e2πi0.j1j2 |1⟩

)
|j2 . . . jn−1jn⟩

−→ · · ·
CRn−→ 1√

2

(
|0⟩+ e2πi0.j1j2...jn |1⟩

)
|j2 . . . jn−1jn⟩ .

As the result of the second qubit is independent of the first qubit and so on (i.e., the i-th qubit does not effect
the j-th qubit for j > i), we can repeat this procedure for the rest of the qubits. Hence, the circuit (5.6) indeed
produces the states (5.7). However, compared to the definition of the QFT, 4, the phases of the qubits are
flipped. We therefore have to apply SWAP-gates between qubit 1 and n, 2 and n− 1, and so on.
This concludes the derivation/proof of the quantum circuit for QFT.

5.5.3. Remarks

For implementing the QFT we needed n Hadamard gates, (n− 1) + · · ·+ 2 + 1 = n(n− 1)/2 controlled-Rk-
gates and ⌊n/2⌋ SWAP-gates. As a swap gates needs 3 CNOT-gates and an arbitrary controlled gates needs 2
CNOT-gates and 3 single-qubit gates, we need a total of

n+
n(n− 1)

2
· 5 +

⌊
n

2

⌋
· 3 ∈ O(n2)

gates to implement the quantum Fourier transform. Compared to the classical discrete Fourier transform
which has complexity O(n2n), this is an exponential speedup! However, as usual, we cannot read out the
result and need to find clever ways of applying the QFT to use its power.
The algorithm is summarized in algorithm 4.

5.6. Shor’s Algorithm

In this section we will finally explore the most well-known quantum algorithm, Shor’s algorithm. It solves the
problem of finding the factors of a large number N efficiently and polynomial in N . The difficulty of factoring
is crucial for modern-day cryptography as RSA (a very common public-key crypto-system) solely relies on
the fact that factoring is hard. As factoring is closely related to finding the period of a function, we split this
section into two parts: the first is concerned with finding the period of a special function (similar to Simon’s
algorithm) and the second takes the steps from period finding to factoring which is purely classical.
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Algorithm 4: Quantum Fourier Transform
Input: state |j1j2 . . . jn−1jn⟩
Output: its Fourier-transformed state
// Run quantum circuit.

1 |j1⟩ H R2 · · · Rn−1 Rn · · · × |k1⟩

|j2⟩ • · · · H · · · Rn−2 Rn−1 × |k2⟩

|jn−1⟩ · · · • · · · • H R2 × |kn−1⟩

|jn⟩ · · · • · · · • • H × |kn⟩
2 return |k1k2 . . . kn−1kn⟩

5.6.1. Period Finding

The first step in Shor’s algorithm and the most ingenious ideas are in finding the period r of some function f
under ordinary addition (cf. Simon’s algorithm which considered modulo-two addition). The best classical
algorithms solving this problem scale exponentially with the number of bits of r. With QC, we can find an
algorithm that scales slightly faster than cubic.

We want to find the period r of the function f : {0, 1}n → {0, 1}n0 : x 7→ bxmodN such that f(x) = f(x+r).
We denote the number of bits of N as n0 and let n := n0. We also have 2n0 > N > r.

Quantum Circuit

Like in Simon’s algorithm, we prepare the state |0⟩⊗n |0⟩⊗n0 , applyH⊗n to the first n gates, apply Uf : |x⟩ |y⟩ 7→
|x⟩ |y ⊕ f(x)⟩, and measure the last n0 qubits. This collapses our state as follows:

1√
2n

2n−1∑
x=0

|x⟩ |f(x)⟩ measure−→ |ψn⟩ =
1√
m

m−1∑
k=0

|x0 + kr⟩ .

We now have a superposition of inputs to f that all yield the same value when applying f where 0 ≤ x0 < r
and m ≈ ⌊2n/r⌋. Like with Simon’s algorithm, we now have the problem that a measurement destroys the
superposition and we are not guaranteed to end up in the same one again and we cannot clone the state due
to the no-cloning theorem. As always, we therefore need to find a clever way of learning r. The main problem
is the “base” x0 which is the changing variable (as r is constant by assumption). We only want to extract the
frequency of the values—which is exactly what QFT does.

Using Quantum Fourier Transform

We saw in the previous section that we end up with the post-measurement state |ψn⟩ = 1√
m

∑m−1
k=0 |x0 + kr⟩

of which we want to extract the frequency r (i.e., we want to put it into a phase such that we are able to read
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it out). We now apply QFT according to 4:

UFT |ψn⟩ =
1√
m2n

m−1∑
k=0

UFT |x0 + kr⟩ = 1√
m2n

m−1∑
k=0

2n−1∑
y=0

e2πi(x0+kr)y/2
n |y⟩

=
1√
m2n

2n−1∑
y=0

m−1∑
k=0

e2πi(x0+kr)y/2
n |y⟩ =

2n−1∑
y=0

e2πix0y/2
n︸ ︷︷ ︸

(†)

[
1√
m2n

m−1∑
k=0

e2πikry/2
n

]
|y⟩

As x0 only appears in the relative phase (†) which has no effect on the measurement (as its magnitude is 1 and
the states |y⟩ are orthonormal), we have successfully eliminated x0 from our calculations! The probability of
some measurement y0 is therefore

P (y0) =
1

m2n

∣∣∣∣∣
m−1∑
k=0

e2πikry/2
n

∣∣∣∣∣
2

. (5.8)

This concludes the intermediate goal of eliminating x0 from our mathematical framework. Next, we have to
interpret our measurement outcomes by analyzing the probability (5.8) deeper.

Post-Processing

We are now at the point where we start the classical post-processing which is where the ingenious ideas that
make Shor’s algorithm work come into play. The result from the above quantum computations is that we
measure y with probability P (y) = 1

m2n

∣∣∑m−1
k=0 e

2πikry/2n
∣∣2. Note that we dropped the index ·0 for brevity.

Calculating the Probability of “Success” First, we show that there is a reasonable probability to get a y
“close” to an integer multiple of 2n/r. We say that y is close to j2n/r (the j-th multiple) if there exists an
|δj | ≤ 1/2 such that

y = j
2n

r
+ δj =: yj .

We do this by inserting yj into (5.8) and lower-bounding the probability:

P (yj) =
1

m2n

∣∣∣∣∣
m−1∑
k=0

e2πikryj/2
n

∣∣∣∣∣
2

=
1

m2n

∣∣∣∣∣
m−1∑
k=0

e2πikr(j2
n/r+δj)/2

n

∣∣∣∣∣
2

=
1

m2n

∣∣∣∣∣
m−1∑
k=0

e2πikj︸ ︷︷ ︸
=(e2πi)jk=1

e2πikrδj/2
n

∣∣∣∣∣
2

=
1

m2n

∣∣∣∣∣
m−1∑
k=0

e2πikrδj/2
n

∣∣∣∣∣
2

=
1

m2n

∣∣∣∣∣
m−1∑
k=0

(
e2πirδj/2

n)k∣∣∣∣∣
2
(†)
=

1

m2n

∣∣∣∣∣1− e2πimrδj/2
n

1− e2πirδj/2n

∣∣∣∣∣
2

(‡)
=

1

m2n

∣∣∣∣∣1− cos(2πimrδj/2
n)− i sin(2πimrδj/2n)

1− cos(2πirδj/2n)− i sin(2πirδj/2n)

∣∣∣∣∣
2
(∗)
=

1

m2n
sin2(πmrδj/2

n)

sin2(πrδj/2n)

In the marked steps, we used the following: (†) Geometric series, (‡) Euler’s formula, (∗) the following relation:∣∣1− cos(2φ)− i sin(2φ)
∣∣2 = (1− cos(2φ)

)2
+ sin2(2φ) = 1− 2 cos(2φ) + cos2(2φ) + sin2(2φ)

= 1− 2 cos(2φ) + 1 = 2
(
1− cos(2φ)

)
= 4 sin2(φ)
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Figure 5.1.: Lower bound of sinx in the interval x ∈ [−π/2, π/2] by x/(π/2).

With the two approximations m ≈ 2n/r and sinx ≈ x for small x, we arrive at

1

m2n
sin2(πimrδj/2

n)

sin2(πirδj/2n)
≈ r

(2n)2
sin2(πδj)

(πrδj/2n)2
=

1

r

(
sin(πδj)

πδj

)2

. (5.9)

Let x := πδj . As we can lower-bound sinx by x/(π/2) in the interval x ∈ [−π/2, π/2], see Figure 5.1, we can
lower-bound (5.9) as follows:

1

r

(
sin(πδj)

πδj

)2

≥ 1

r

(
2πδj
π2δj

)2

=
1

r

(
2

π

)2

=
2

π2r
≈ 0.405

r

As there are r − 1 different4 j and the above probability is for a specific j, out final probability of getting a
measurement in vicinity of an integer multiple of 2n/r is greater than 40%! What remains is to recover the
period from collecting multiple samples (cf. Simon’s algorithm).

Recovering the Period We saw that after running the quantum circuit and measuring, we end up with ℓ
samples y1, y2, . . . , yℓ. Suppose that these are exact, i.e., δj = 0 for all j. We could then recover the period by
calculating

gcd

(
j1
2n

r
, j2

2n

r
, . . . , jℓ

2n

r

)
=

2n

r
. (5.10)

However, we do not have the exact values and the y’s are just in a vicinity around integer multiples of 2n/r!
By reformulating the “closeness” of yj as follows and choosing a relaxed upper bound,

yj = j
2n

r
+ δj ⇐⇒

∣∣∣∣yj−2n
j

r

∣∣∣∣ ≤ 1

2
=⇒

∣∣∣∣ yj2n − jr
∣∣∣∣ = ∣∣∣∣jr − yj

2n

∣∣∣∣ ≤ 1

2 · 2n
=

1

2 · (2n0)2
≤ 1

2r2
, (5.11)

we can apply the following theorem from number theory using continued fraction expansion:

Theorem 16. If |p/q − x| ≤ 1/(2q2) with real x and p/q, then p/q will appear in the CFE of x as a partial sum.
4As yj ∈ {1, 2, . . . , 2n − 1} and also yj = j2n/r + δj , we can see that j has to be one of {1, 2, . . . , r − 1}. For j = r, we have
yr = r2n/r + δr = 2n + δr ≥ 2n − 1/2 > 2n − 1 as |δj | ≤ 1/2. For j = 0, we have y0 = 0 · 2n/r + δ0 = δ0 and therefore y0 = 0
as y0 can only take integral values. However, we do not learn anything about r with y = 0 and we therefore discard it from the
probability discussion. Hence, we end up with r − 1 “useful” values of j.
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Proof. See Nielsen and Chuang, Appendix A4.4.
With this theorem, we can recover the exact multiples j 2n/r with p ≜ j, q ≜ r, and x ≜ yj/2n. Subsequently,

we apply (5.10). We have now successfully recovered the period r with overwhelming probability! By relaxing
the upper bound on the error in (5.11), the y’s are not required to be closest to integral multiples, but they
can also be the second, third, fourth, etc. closest. This upper bound ramps up the probability of measuring a
useful y to 95%!

At this point we finished the period finding which was the hard part of Shor’s algorithm. Next, we will look
at how to go from period finding to factoring and will finally summarize the algorithm. The real clever part of
Shor’s algorithm lies in using (5.11) to recover the exact integral multiples.

5.6.2. From Period Finding to Factoring

After the first step (period finding), we found an r such that f(x) = f(x+ r) for f(x) = bxmodN . We now
use this result for finding the factors of N . We do this recursively. First, find a factor p of N . Than we know
N = pq. Now, find the factors of p and q until all of them are prime. As N has at most log2N factors and
finding a factor has polynomial complexity, we can solve the whole problem in polynomial time. We focus on
finding large factors of a single number N as we can easily identify small factors such as 2, 3, 5, . . . and get rid
of them. With the following procedure (where all congruencies are modulo N),

1. Pick a random a. If a is not co-prime5 to N , we found a factor and terminate.
2. Find the smallest r such that ax+r ≡ ax. From this we know that6 ar ≡ 1.
3. If r is odd, abort and go to first step. Otherwise, let x := ar/2modN . From this we know that7

x2 − 1 = (x− 1)(x+ 1) ≡ 0.
4. We know that8 x− 1 ̸≡ 0, contradicting the assumption that r is the smallest period (as r/2 would be

one, too).
5. If x+ 1 ̸≡ 0, abort and go to the first step.
6. We now know that p := gcd(x − 1, N) > 1 and q := gcd(x + 1, N) > 1 due to (x − 1)(x + 1) ≡ 0. If p

and q are prime, we also have N = pq. If they are not, we can still find factors by division.
we managed to factor N efficiently! However, at two steps (3 and 5), we have to be lucky that our assumptions
hold. With some number theory, one can show that the probability of this is greater than 50% which is not
bad (see Mermin, 2007, Appendix M for details).

5.6.3. Remarks

We saw that Shor’s algorithm provides an exponential speedup over the classical solution. And compared to
the algorithms before, we can apply this problem to break RSA and public-key crypto! However, as we will see
in section 6.6, modern-day quantum computer are far from being able to apply this algorithm to real-world
problems as we have far too few qubits available (around a thousand while we need thousands of millions).
The algorithm is summarized in algorithm 5 using the period finding in algorithm 6, the actual quantum

part.
5Co-prime means that gcd(a,N) = 1 which is easy to check using Euclid’s algorithm.
6Due to ax+r ≡ ax ⇐⇒ axar ≡ ax ⇐⇒ ar ≡ 1.
7Due to ar ≡ 1 ⇐⇒ ar − 1 ≡ 0 ⇐⇒ x2 − 1 ≡ 0.
8Due to x− 1 ≡ 0 ⇐⇒ x ≡ 1 ⇐⇒ ar/2 ≡ 1.
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Algorithm 5: Shor’s Algorithm
Input: composite number N
Output: non-trivial factor of N

1 get rid of small factors
2 sample a ∈ (0, N).
3 if gcd(a,N) > 1 then

// The GCD already is a factor of N .
4 return gcd(a,N)

5 find minimum r such that ar ≡ 1 mod N using algorithm 6 // Quantum Part.
6 if r is odd then
7 abort and sample new a

8 if ar/2 + 1 ≡ 0 mod N then
9 abort and sample new a

10 p, q ← gcd(ar/2 ± 1, N)
// Return only non-trivial factors.

11 if p > 1 then
12 return p
13 if q > 1 then
14 return q
15 return “FAILED”

5.7. Grover’s Algorithm

We will now look at Grover’s algorithm, a very different quantum algorithm implementing unstructured search.
Opposed to Shor’s algorithm, however, it is much simpler and does not involve and post-processing. As before,
we first go over the problem description, then the classical approach, followed by the quantum, and finally we
finish up with some remarks.

5.7.1. Problem

The problem solved by Grover’s algorithm is very general: suppose a list (or puzzle or whatever) with N = 2n

possibilities. There are K < N correct options and we want to find one of them. Let f : {0, 1}n → {0, 1} :
x 7→ f(x) be a function that is 1 iff x was a solution.

5.7.2. Classical Approach

Classically, we need N −K queries of f to get a solution with certainty (if we queries the first N −K options,
the last K options must be solutions, hence N −K).
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Algorithm 6: Period Finding Algorithm
Input: function f : {0, 1}n → {0, 1}n0 = axmodN with the property f(x) = f(x+ r) for a constant

period r ∈ {0, 1}n with n = 2n0; tries m
Output: the period r

1 R ← {} // Prepare period candidate set.
2 foreach k = 1, 2, . . . ,m do

// Run quantum circuit.
3 |0⟩n H

Uf

UFT yk

|0⟩n0

4 if yk = 0 then
// A zero y does not convey any information.

5 continue
// Recover period candidates.

6 pk,i/qk,i ← irreducible numerator/denominator of i-th partial sum of yk/2n
7 foreach i = 0, 1, . . . do
8 if qk,i+1 > N then

// Add period candidate to the candiate set.
9 rk ← qk,i

10 R ← R∪ {rk}

11 r∗ ← lcm(R) // least common multiple
12 return r∗
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5.7.3. Quantum Approach

We can again directly apply Deutsch’s approach (5.2). As usual, we will neglect the final qubit and write the
state (before the final Hadamard-layer!) as

1√
2n

∑
x

(−1)f(x) |x⟩ .

Note that the only |x⟩ with a bit flip are the solutions x∗ we are looking for. However, as usual, we cannot
simply measure the state but have to find clever ways of reading out the information. Instead, we introduce a
new unitary transformation Ũ followed by Hadamard layers:

|0⟩n H
Uf

H Ũ H

|0⟩ H

This unitary transformation is defined as

Ũ := 2 |0⟩n n⟨0| − 1 = diag(1,−1,−1, . . . ,−1).

For brevity, we write UR := H⊗nŨH⊗n and G := URUf which we call Grover’s unitary. We claim (and show)
now that applying G for

√
N times,

|0⟩n H
G G

· · ·
G

x∗

· · ·

yields a correct result f(x∗) = 1 when measuring with almost unit probability. We will now first look an at
algebraic derivation why this is the case and then look at a graphical illustration.

Algebraic Derivation

First, we derive what UR actually does. Let |ψ⟩ = 1√
N

∑
x |x⟩ be the equal superposition of all basis states

(note that this is also the input to the first Grover-unitary). Then we can write UR as

H⊗nŨH⊗n = H⊗n(2 |0⟩n n⟨0| − 1)H⊗n = 2
(
H⊗n |0⟩n

)(n⟨0|H⊗n)− 1 = 2 |ψ⟩⟨ψ| − 1.

For further derivations, let

|α⟩ := 1√
N −K

∑
x, f(x)=0

|x⟩ |β⟩ := 1√
K

∑
x, f(x)=1

|x⟩

be states in superposition of all the non-solutions and solutions, respectively. We can then reformulate |ψ⟩ as

|ψ⟩ =
√
N −K
N

|α⟩+
√
K

N
|β⟩ .= cos

θ

2
|α⟩+ sin

θ

2
|β⟩
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with an appropriate θ. By applying G = UrUf , we have

URUf |ψ⟩ = UR

[
cos

θ

2
|α⟩ − sin

θ

2
|β⟩
]
= UR

[
cos

θ

2
|α⟩+ sin

θ

2
|β⟩ − 2 sin

θ

2
|β⟩
]
= UR

[
|ψ⟩ − 2 sin

θ

2
|β⟩
]

=
(
2 |ψ⟩⟨ψ| − 1

)[
|ψ⟩ − 2 sin

θ

2
|β⟩
]
= 2 |ψ⟩ ⟨ψ|ψ⟩︸ ︷︷ ︸

=1

−4 sin θ
2
|ψ⟩ ⟨ψ|β⟩︸ ︷︷ ︸

=sin(θ/2)

− |ψ⟩+ 2 sin
θ

2
|β⟩

= 2 |ψ⟩ − 4 sin2
θ

2
|ψ⟩ − |ψ⟩+ 2 sin

θ

2
|β⟩ = |ψ⟩ − 4 sin2

θ

2
|ψ⟩+ 2 sin

θ

2
|β⟩

= cos
θ

2
|α⟩+ 3 sin

θ

2
|β⟩ − 4 sin2

θ

2

(
cos

θ

2
|α⟩+ sin

θ

2
|β⟩
)

= cos
θ

2
|α⟩+ sin

θ

2
|β⟩ − 4 sin2

θ

2
cos

θ

2
|α⟩ − 4 sin2

θ

2
sin

θ

2
|β⟩+ 2 sin

θ

2
|β⟩

=

(
1− 4 sin2

θ

2

)
cos

θ

2
|α⟩+

(
3− 4 sin2

θ

2

)
sin

θ

2
|β⟩ = cos

3θ

2
|α⟩+ sin

3θ

2
|β⟩

where we uses some trigonometric identities in the last step. Furthermore, we can show (by induction) that
after k steps, we have the state

Gk |ψ⟩ = cos

(
2k + 1

2
θ

)
|α⟩+ sin

(
2k + 1

2
θ

)
|β⟩ .

That is, with every k, we rotate around the non-solutions |α⟩ and the solutions |β⟩. So how many iterations k
do we need to get a success probability close to one? If we approximate |β⟩’s amplitude with one, we can
derive what k should be:

sin

(
2k + 1

2
θ

)
≈ 1 =⇒ 2k + 1

2
θ ≈ π

2
=⇒ k ≈ π

2θ
− 1

2
≈ π

2θ
(5.12)

Note that the last approximation is valid as k is an integer anyway and we can always use the ceiling. If we
assume that the initial probability is small, i.e., θ is small, we can approximate it:

sin
θ

2
≈ θ

2

!
=

√
K

N
=⇒ θ ≈ 2

√
K

N

Plugging this result back into (5.12) yields

k ≈ π

2θ
≈ π

2 · 2
√

K
N

=
π

4

√
N

K

Grover’s algorithm is therefore in O(
√
N/K). As θ gets scales with K, fewer iterations are necessary to find a

solution in a pool of multiple solutions. Also, the probability oscillates with a higher frequency. Interestingly,
applying G too often reduces the probability of getting a correct readout again! But on a large scale, this is
not a problem as we can always check a solution by invoking f for the measurement outcome.

Illustration

5.7.4. Remarks

We saw that Grover’s algorithm provides a square-root speedup over the classical solution and an even greater
speedup if there are multiple solutions. Compared to Shor’s algorithm, no post-processing is necessary and
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not so many qubits are necessary. Also, Grover’s algorithm is a general-purpose search algorithm as long as
we can implement the query unitary. However, to determine the number of G-applications, we must know
how many solutions exist. If we do not know this, we have to guess and possibly run the algorithm over and
over again. We also have the following theorem:

Theorem 17 (BBBV Theorem). Grover’s algorithm is optimal for black-box unstructured search problems.

If there would exist a more efficient algorithm, we could solve all problems in NP.
The algorithm is summarized in algorithm 7.

Algorithm 7: Grover’s Algorithm
Input: function f : {0, 1}n → {0, 1} : x 7→ f(x) which is 1 for a solution; optional: number of solutions

K or number of iterations k
Output: a solution x∗ with almost unit probability if K is given

1 if K is given then
2 k = ⌈π4 ·

√
N
K ⌉ // Calculate number of iterations.

// Run quantum circuit.
3 |0⟩n H

Gk

x∗

|0⟩ H

4 return x∗

5.7.5. Modified Grover’s Algorithm

46



6. Quantum Error Correction

So far, we assumed that applying gates works perfectly, i.e., that the state transform exactly as our mathematical
model predicts. However, in the real world, (quantum) computers are noisy and by no means perfect. In
classical computing, the errors that might occur when sending a message (e.g., through the internet or through
time by saving it to disk) are confined to bit-flips. In order to make a computer resilient towards bit-flips, the
most simplistic approach is to just copy the data and define logical bits

0 7→ 000 =: 0L 1 7→ 111 =: 1L.

This is called encoding and the protocol is called the code (in this case, repetition code). Decoding the message
works by a majority vote, i.e.:

000 7→ 0 001 7→ 0 010 7→ 0 011 7→ 1

100 7→ 0 101 7→ 1 110 7→ 1 111 7→ 1

This means that a decoding error happens only if more than one bit is flipped. In other words: the encoding is
resilient w.r.t. to one bit-flip. Assume that a bit-flip happens with probability p (see Figure 6.1a). Then the
error probability is

p(1)e := P (two or more flipped) = 3P (exactly two flipped) + P (all flipped) = 3p2(1− p) + p3 < 3p2,

where 3p2 is an upper bound. If we re-apply the encoding (and therefore encode a logical bit into nine physical
bits), the new error probability is p(2)e = 3(3p2)2. In general, after k applications of the encoding, the error
probability is proportional to (3p)2

k . Hence, (3p)2k →k→∞ 0 for p < 1/3 and we can achieve an arbitrarily
good encoding for finite k.

But can we directly transfer this principle to quantum error correction (QEC)? No, because:
• We cannot copy data due to the no-cloning theorem—but would it even help as measurements destroy

everything anyway?
• We do not have discrete error but a continuum—do we need infinite precision to locate the error?
• Measuring destroys the message—how to do decode?

Fortunately though, all of these problems can be circumvented and QEC is possible. We will now cover two
kinds of errors: bit-flips and phase-flips and will subsequently see that correcting these suffices to correct all
possible errors, effectively reducing the continuum of errors to a finite set.

6.1. Tackling Bit-Flips

We start by fixing bit-flips. To encode the message, we copy the coefficients of an arbitrary state |ψ⟩ =
α |0⟩+ β |1⟩ to two encoding qubits:

|ψ⟩ • •
|0⟩

|0⟩

= α |000⟩+ β |000⟩ =: α |0⟩L + β |1⟩L
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0

1

0

1

1− p
p

p

1− p

(a) Classical Bit-Flip

|ψ⟩ |ψ⟩

X |ψ⟩

1− p
p

(b) Quantum Phase-Flip

|ψ⟩ |ψ⟩

Z |ψ⟩

1− p
p

(c) Quantum Bit-Flip

Figure 6.1.: State diagram for classical/quantum bit/phase-flip channels while sending a message. A
bit/phase-flip happens with probability p and the message is left untouched with probability
1− p.

Note that we did not actually copy the state, but only the coefficients which does not violate the no-cloning
theorem! We now assume that an error only happens on exactly one qubit (because otherwise we are not able
to recover anyway). We encode this as follows:

|ψ⟩ • • X i

|0⟩ Xj

|0⟩ Xk

i j k State
0 0 0 α |000⟩+ β |111⟩
1 0 0 α |100⟩+ β |011⟩
0 1 0 α |010⟩+ β |101⟩
0 0 1 α |001⟩+ β |110⟩

Fortunately, all possible result states are orthogonal! Hence, we can uniquely identify my measuring even
though they are all in superposition. However, if we would simply measure, we would destroy the state. We
therefore copy the state again into two helper qubits which we can then measure:

|ψ⟩ • • X i •

C|0⟩ Xj • •

|0⟩ Xk •

|0⟩ x

|0⟩ y

x y Correction C
0 0 1

0 1 X3

1 0 X1

1 1 X2

The interpretation of this is as follows: for x = 1, we conclude that the first and second qubit have different
values. Similarly, y = 1 encodes that the second and third qubit have different values. If they have the same
value, the CNOT-gates would either be not applied or cancel each other out. Note again that the sole reason
why this works is that the state are orthogonal! From this discussion, we can deduce the above corrections.

This approach is also called a parity check of Z1Z2 and Z2Z3, i.e., a parity check in Z-basis.
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6.2. Tackling Phase-Flips

Correcting phase-flips (see Figure 6.1c) is analogous to correcting bit-flips, but in Hadamard basis. The
encoding circuit including the error model along with the resulting states therefore is:

|ψ⟩ • • H Zi

|0⟩ H Zj

|0⟩ H Zk

i j k State
0 0 0 α |+++⟩+ β |− − −⟩
1 0 0 α |−++⟩+ β |+−−⟩
0 1 0 α |+−+⟩+ β |−+−⟩
0 0 1 α |++−⟩+ β |− −+⟩

By applying Hadamard again in the decoding circuit:

|ψ⟩ • • H Zi H •

H C|0⟩ H Zj H • •

|0⟩ H Zk H •

|0⟩ x

|0⟩ y

x y Correction C
0 0 1

0 1 Z3

1 0 Z1

1 1 Z2

This approach is a parity check of X1X2 and X2X3, i.e., a parity check in X-basis.

6.3. Shor’s Code

The idea of Shor’s code is to concatenate the circuits discussed before, using the bit-flip correction three times
for each physical qubit of the phase-flip parity check. The whole circuit is shown in Figure 6.2. One can easily
verify that Shor’s code used the following mapping for logical qubits:

|0⟩ 7→ |000⟩+ |111⟩√
2

⊗ |000⟩+ |111⟩√
2

⊗ |000⟩+ |111⟩√
2

=: |0⟩L

|1⟩ 7→ |000⟩ − |111⟩√
2

⊗ |000⟩ − |111⟩√
2

⊗ |000⟩ − |111⟩√
2

=: |1⟩L
(6.1)

An important feature of Shor’s code is that it is not only capable of correcting X or Z errors, but also XZ
errors, i.e., simultaneous bit- and phase-flips. With this feature, it is possible to correct any possible error (see
subsection 6.3.1). However, Shor’s code is not optimal as it uses so many qubits. It is also possible to use only
seven or even five qubits, see section 6.4.

6.3.1. Universal Error Correction

As already discussed is the Shor code capable of correcting XZ-type errors acting on a single qubit. From this
we can conclude that the Shor code is in fact capable of correcting arbitrary errors, even non-unitary ones, as
long as they act on a single qubit and are valid quantum operations.
Theorem 18 (Universal Error Correct). The Shor code is capable of correcting arbitrary errors.
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|ψ⟩1 • • H • • X i1 Zℓ1 •

C1

H • H

C

|0⟩2 Xj1 Zm1 • • H • H

|0⟩3 Xk1 Zn1 • H • H

|0⟩ x1

|0⟩ y1

|0⟩4 H • • X i2 Zℓ2 •

C2

H • • H

|0⟩5 Xj2 Zm2 • • H • • H

|0⟩6 Xk2 Zn2 • H • • H

|0⟩ x2

|0⟩ y2

|0⟩7 H • • X i3 Zℓ3 •

C3

H • H

|0⟩8 Xj3 Zm3 • • H • H

|0⟩9 Xk3 Zn3 • H • H

|0⟩ x3

|0⟩ y3

|0⟩ x

|0⟩ y

Figure 6.2.: Quantum circuit for encoding in Shor’s code (the left part until the error gatesX and Z)
and for decoding (everything to the right of the error gates). The matrices C1, C2, C3, and
C denote the corresponding correction matrices for the bit flip (“inner” code) and the
phase flip (“outer” code). The “error indices” are mutually exclusive per index or all zero, i.e.,
(ia, ja, ka), (ℓb,mb, nb) ∈

{
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)

}
for a, b ∈ {1, 2, 3}.
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Proof. W.l.o.g, assume that the error happens on the first qubit and is described by E1 ∈ C2×2. We can express
this matrix using the three Pauli matrices:

E = α011 + α1X1 + α2Z1 + α3X1Z1

This is easy to verify by calculating the right-hand-side, equating it to E1, and explicitly solving the resulting
linear system of equations:

[
e11 e21
e21 e22

]
=

[
α0 + α2 α1 − α3

α1 + α3 α0 − α2

]
=⇒


α0

α1

α2

α3

 =
1

2


e11 + e22
e12 + e21
e11 − e22
e21 − e12


Let |ψ⟩L = α |0⟩L + β |1⟩L be a logical qubit encoded with Shor’s code (see (6.1) for the logical basis states).
Then, by linearity, an application of the error operator E1 yields

E1 |ψ⟩L = α0 |ψ⟩L + α1X1 |ψ⟩L + α2Z1 |ψ⟩L + α3X1Z1 |ψ⟩L .

By dropping the last six qubits from the basis states (as the error only acts on the first qubit), each individual
error has the following effect on |ψ⟩K:

11 |ψ⟩L =
α√
2
(|000⟩+ |111⟩)⊗ |· · ·⟩+ β√

2
(|000⟩ − |111⟩)⊗ |· · ·⟩

X1 |ψ⟩L =
α√
2
(|100⟩+ |011⟩)⊗ |· · ·⟩+ β√

2
(|100⟩ − |011⟩)⊗ |· · ·⟩

Z1 |ψ⟩L =
α√
2
(|000⟩ − |111⟩)⊗ |· · ·⟩+ β√

2
(|000⟩+ |111⟩)⊗ |· · ·⟩

X1Z1 |ψ⟩L =
α√
2
(|100⟩ − |011⟩)⊗ |· · ·⟩+ β√

2
(|100⟩+ |011⟩)⊗ |· · ·⟩

As these states are mutually orthogonal, measuring the parity qubits uniquely identifies one of the four errors
and the state collapses onto either one of them. Subsequently, Shor’s code can be used to correct the individual
errors. Hence, Shor’s code can be used to correct arbitrary errors.

6.4. Other Codes

As already mentioned, the Shor code is not optimal in the sense of saving qubits. There exist several smaller
ones, for instance the Steane code

|0⟩L =
1√
8
(|0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩+ |0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩)

|1⟩L =
1√
8
(|1111111⟩+ |0101010⟩+ |1001100⟩+ |0011001⟩+ |1110000⟩+ |0100101⟩+ |1000011⟩+ |0010110⟩)

or five-qubit codes. However, the Steane code has some nice properties which we will discuss in the next
section.
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6.5. Fault-Tolerance and Transversality

In fault-tolerant QC, the idea is to perform all operations in encoded states (i.e., logical qubits), without ever
decoding. One code supporting this is the Steane code we saw in the previous section. It allows us to execute
certain gates transversely. That is, we can design a gate that has the same effect on the individual physical
qubits as on the logical qubits. For the Steane code, the basic gates are simply tensor-products of single-qubit
gates:

XL = X1 ⊗X2 ⊗ · · · ⊗X7 ZL = Z1 ⊗ Z2 ⊗ · · · ⊗ Z7 HL = H1 ⊗H2 ⊗ · · · ⊗H7

While they acting on the individual qubits is trivial, one can also show that:
XL |0⟩L = |1⟩L XL |1⟩L = |0⟩L
ZL |0⟩L = |0⟩L ZL |1⟩L = − |1⟩L

HL |0⟩L =
1√
2
(|0⟩L + |1⟩L) = |+⟩L HL |1⟩L =

1√
2
(|0⟩L − |1⟩K) = |−⟩L

An important property to consider in fault-tolerant QC is how errors propagate. For the X-gate, for instance,
an error does not propagate to other physical qubits as the gate is local and can be corrected with the Steane
code. Application of a CNOT-gate withing a Steane block, however, may propagate an error onto a second
qubit which can not be corrected! Instead, a logical CNOT-gate

CNOTL |x⟩L |y⟩L 7→ |x⟩L |x⊕ y⟩L = CNOT 1,8 ⊗ CNOT 2,9 ⊗ · · · ⊗ CNOT 7,14

has to be used that only works across two blocks (see Figure 6.3 for the circuit). The T-gate, however, cannot
be implemented transversely. Its fault-tolerant implementation is more complicated and out of scope for this
course.
The general scheme of performing fault-tolerant QC is:
1. prepare quantum state in logical qubit
2. apply fault-tolerant gate
3. correct errors
4. go to second step until the algorithm is finished

As we already saw, the second step is the fundamental challenge as it is hard to come up with fault-tolerant
gates, which we define as follows:
Definition 5 (Fault-Tolerance). A procedure is called fault-tolerant if the failure of one component causes at
most one error in each encoded block at the output step.

6.6. Threshold Theorem

So far, we assumed that the QEC itself works perfectly. But what if the error correction itself causes errors
again? Like for classical repetition codes, we can simply re-encode the bits, building up a layered coding
architecture. Let m be the number of places where an error can occur, then the probability of an error using
a single coding layer is upper-bounded by p(1)e = (mp)2. For k layers, the error probability is p(k)e = (mp)2

k

which, analogous to classical error correction, converges to zero for k →∞ if p < 1/m. Hence, we can achieve
any error probability ϵ with a large enough k.
This brings us to the threshold theorem:
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•

•
•

•
•

•

Figure 6.3.: Fault-Tolerant CNOT-Gate

Theorem 19 (Threshold Theorem). A quantum circuit with p(n) gates on n qubits may be simulated with an
error probability of at most ϵ > 0 using1

O

(
p(n) logc

p(n)

ϵ

)
gates (for some constant c when the gates fail with probability of at most p given that p < pth for some
code-dependent constant threshold pth.

For the Steane code, pth ≈ 10−5. Hence, to factor numbers with around 2000, we would needs millions of
millions of qubits! This is the sole reason why we do not have quantum computing at the moment!

1Note that in the lecture, this bound is written as O(
p(n) poly(log(p(n)/ϵ))

).
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7. Quantum Nonlocality

This chapter is a bit different from the previous as we will discuss a general phenomenon of QM and not only
QC: quantum nonlocality. We will see that QM is inherently different from classical physics in that it is not
composed of elements of reality.
Of course, QM is real in the sense that it exists. Hence, what do we mean by elements of reality?

Definition 6 (Elements of Reality). If there is a physical quantity which we can predict with certainty (i.e.,
what the outcome will be when measuring it), it is real, whether we perform an experiment or not.

In QM, consider the Bell state |Φ+⟩ = 1√
2
(|00⟩+ |11⟩) where the first qubit belongs to Alice and the second

belongs to Bob which are extremely far away from each other in separate labs. If Alice measures “+” on her
side, the measurement “+” becomes an element of reality for Bob. So when did it become real? We have two
options:

1. It has been real ever since.
2. It became real once Alice made her measurement.

We call these two assumptions “local realism” and “locality,” respectively. As we assume the Alice’s and Bob’s
lab where far apart from each other, locality would contradict special relativity.

7.1. CHSH Inequality

Assume that Alice and Bob have both two options for altering their measurement, A1 and A2, and B1 and B2,
respectively. Either measurement yields either “+” or “−”. They repeat their experiment multiple times and
record their measurements in a table

# A1 A2 B1 B2

0 + −
1 + +
2 + +
3 − +
... ... ... ... ...

Suppose that we want to fill in the blanks in the table (and we cannot just repeat the same experiment again
and take a different measurement). This is only possible, if our measured physical quantity is real and we
have the famous CHSH inequality.

Theorem 20 (CHSH Inequality). Assume that the experiment log can be filled in, i.e., that the physical quantities
are real. Then the following inequality holds:

β := E[A1, B1] + E[A1, B2] + E[A2, B1]− E[A2, B2] ≤ 2.

Where E[X,Y ] =
∑

x,y xyP (x, y |X,Y ) is the expectation of X and Y .
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Proof. We can easily proof this by enumerating all assignments of A1, A2, B1, B2 ∈ {+1,−1}:

A1B1 +A1B2 +A2B1 −A2B2 = A1(B1 +B2) +A2(B1 −B2) ≤
∣∣A1(B1 +B2)

∣∣+ ∣∣A2(B1 −B2)
∣∣

=
∣∣B1 +B2

∣∣+ ∣∣B1 −B2

∣∣ ≤ 2

Note that we did not explicitly enumerate all values, but this is effectively an enumeration.

But what happens if Alice and Bob share a Bell state?

7.2. Quantum Violation of the CHSH Inequality

Assume that the different measurements Alice and Bob can take are characterized by the following operators,

A1 = Z1 A2 = X1 B1 =
Z2 +X2√

2
B2 =

Z2 −X2√
2

.

We can now explicitly calculate β (and drop the explicit ⊗ for brevity, it should be clear where to insert one
from the indices):

β = E[A1, B1] + E[A1, B2] + E[A2, B1]− E[A2, B2]

=
〈
Φ+
∣∣A1B1

∣∣Φ+
〉
+
〈
Φ+
∣∣A1B2

∣∣Φ+
〉
+
〈
Φ+
∣∣A2B1

∣∣Φ+
〉
−
〈
Φ+
∣∣A2B2

∣∣Φ+
〉

=
〈
Φ+
∣∣ (A1B1 +A1B2 +A2B1 −A2B2

) ∣∣Φ+
〉

=
〈
Φ+
∣∣ (Z1

Z2 +X2√
2

+ Z1
Z2 −X2√

2
+X1

Z2 +X2√
2
−X1

Z2 −X2√
2

) ∣∣Φ+
〉

=
1√
2

〈
Φ+
∣∣ (Z1(Z2 +X2) + Z1(Z2 −X2) +X1(Z2 +X2)−X1(Z2 −X2)

) ∣∣Φ+
〉

=
1√
2

〈
Φ+
∣∣ (Z1Z2 + Z1X2 + Z1Z2 − Z1X2 +X1Z2 +X1X2 −X1Z2 +X1X2

) ∣∣Φ+
〉

=
2√
2

〈
Φ+
∣∣ (Z1Z2 +X1X2

) ∣∣Φ+
〉
=
√
2
(〈

Φ+
∣∣Z1Z2

∣∣Φ+
〉
+
〈
Φ+
∣∣X1X2

∣∣Φ+
〉)

(∗)
=
√
2
(〈

Φ+
∣∣Φ+

〉
+
〈
Φ+
∣∣Φ+

〉)
= 2
√
2

In (∗) we used the fact that neither Z1Z2 nor X1X2 alter the Bell state. But this quantity is greater than 2 and
therefore violates the CHSH inequality! As we ruled out locality by putting Alice and Bob so far away that
neither one is in the light cone of the other, nature is not real in the sense of 6. Also, quantum correlations are
extremely important and stronger than anything we will ever see in “classical” physics.

7.3. Tsirelson’s Bound

We saw that in classical physics, the correlation β of two random variables is bounded by β ≤ 2. In quantum
mechanics, however, we can achieve βq = 2

√
2. In fact, we have the following theorem:

Theorem 21 (Tsirelson’s Bounds). The maximum possible correlation in quantum mechanics is βQ = 2
√
2

which is achieved only by the Bell state.

From this we can conclude also, that if an experiment exhibits a correlation of βQ ≈ 2
√
2, the shared state

was a Bell state!
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7.4. Quantum Key Distribution

Tsirelson’s Bound also allows quantum key distribution (QKD), i.e., a protocol in which two parties (Alice and
Bob) agree on a secret key (cf. Diffie-Hellman). Compared to the setting before, Bob now also has a third
measurement B3. QKD now takes the following steps.

1. Alice and Bob share a qubit through a trusted channel.

2. Alice makes measurements A1 and A2 at random.

3. Bob makes measurements B1, B2, and sometimes (with lower probability) B3 = Z2 at random.

4. Repeat from first step a certain number of rounds.

5. Alice announces a random set of rounds.

6. Alice and Bob announce their measurement result in the announced set of rounds.

7. Both compute βQ and if βQ ≪ 2
√
2, they abort as they do not share a Bell state.

8. Bob announces the subset of rounds he measured in basis Z2.

9. Alice announces the subset if rounds she measured in basis Z1.

10. They are now guaranteed to have measured the same bits due to quantum correlation.

Interestingly, this protocol is secure under any attack as “not even the universe” know the key. This protocol is
known as device-independent QKD. However, it requires sharing a qubit through a trusted channel which is
nearly impossible to achieve.
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8. Measurement-Based Quantum Computing

8.1. Identity

8.2. Arbitrary Rotations

8.3. CNOT

8.4. Cluster States

8.5. Handling Errors

8.6. Important Gates
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A. Formulary

A.1. Gates

Name Matrix Circuit

Hadamard H = 1√
2

[
1 1
1 −1

]
H

Pauli-X X =

[
0 1
1 0

]
X

Pauli-Y Y =

[
0 −i
i 0

]
Y

Pauli-Z Z =

[
1 0
0 −1

]
Z

Phase S =

[
1 0
0 i

]
S

π/8 T =

[
1 0

0 eiπ/4

]
T

Controlled-NOT CNOT =

[
1 0
0 X

]
•

SWAP SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ×

×

Controlled-Z CZ =

[
1 0
0 Z

] •

Z

Controlled-Phase CS =

[
1 0
0 S

] •

S

Toffoli TOFFOLI =

1 0 0
0 1 0
0 0 X

 •
•

Table A.1.: Essential Quantum Gates and Circuit Symbols

A.2. Gate Equivalences

• HXH = Z

• HZH = X
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• XZ ≡ ZX ≡ Y

•
•

• • =

• •

•
• •

• =

•
•

A.3. Miscellaneous

Computational to Hadamard Basis

c+ |+⟩+ c− |−⟩ =
1√
2

(
c+(|0⟩+ |1⟩) + c−(|0⟩ − |1⟩)

)
=
c+ + c−√

2
|0⟩+ c+ − c−√

2
|1⟩

Diagonalization:

A = SDS−1, D = diag(λ1, λ2, . . . , λn), S =
[
v1 v2 · · · vn

]
Geometric Series:

n∑
k=0

xk =
1− xn+1

1− x

Number Divided by its Square-Root
x√
x
=
√
x
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