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1 Introduction

Probabilistic graphical models (PGMs) are one of the most exciting development in machine learning, knowl-
edge representation, artificial intelligence, statistics, electrical engineer, and much more research areas that
has evolved in the last two decades. This summary covers a wide range of topics of this field, including
Bayesian networks, Markov networks, factor graphs, junction trees, parameter learning, structure learning,
exact inference, variable elimination, approximate inference, sampling, MCMC, Gibbs, loopy belief propa-
gation, Bayesian learning, missing data, EM, temporal models, hidden Markov models, forward-backward
propagation, Viterbi, Baum-Welch, DBNs, and many more.
Some of the fundamental questions of graphical models are:

• What are model types? What does a model mean/imply/assume? How to incorporate
conditional independencies to reduce representation size?

• How to answer questions/queries with the model? What is the probability of X given
some observations? What is the most likely observation of a phenomenon? What decision to make?

• How to learn the model from data? What model fits to the data? What are right/good
parameters? How to obtain the structure of a model?

This summary starts off, after some foundations, by introducing Bayesian networks and how to perform
inference (in discrete domains). Later, undirected graphical models (Markov random fields), continuous
random variables, and approximate inference is covered.

7



2 Foundations

This chapter covers fundamental concepts of probability theory and machine learning that are required for
the later chapters. Note that not all relevant concepts of probability theory are covered.

2.1 Probability Theory

This section covers some very important concepts of probability theory, however, one should already be familiar
with some basics like probability measures, density functions, joint distributions, marginalization, etc.1

One note on notation: whenever a sum represents a marginalization over some random variable X, it is
written as

P (Y ) =

marg.∑
X

P (X,Y ) :=
∑

x∈val(X)

P (X = x, Y )

for brevity.

2.1.1 (Conditional) Independence

The most important concept leveraged in probabilistic graphical models is (conditional) independence of
random variables. Two random variables X and Y are statistically independent if knowing either does not
change the belief/probability of the other, i.e.,

P (X |Y ) = P (X) and P (Y |X) = P (Y ).

This is equivalent to the definition of independence, P (X,Y ) = P (X)P (Y ). Independence is denoted X ⊥ Y
and is a symmetric properties. A milder property is conditional independence, i.e., two random variables X
and Y are independent if Z is given:

P (X |Y, Z) = P (X |Z) and P (Y |X,Z) = P (Y |Z).

Again, this property can be written as P (X,Y |Z) = P (X |Z)P (Y |Z) by the chain rule. Conditional
independency is denoted X ⊥ Y |Z.

The following properties hold and can be useful for some proofs later on:
X ⊥ Y |Z ⇐⇒ Y ⊥ X |Z (Symmetry)

X ⊥ (Y,W ) |Z =⇒
(
X ⊥ Y |Z

)
∧
(
X ⊥W |Z

) (Decomposition)
X ⊥ (Y,W ) |Z =⇒ X ⊥ Y | (Z,W ) (Weak Union)(

X ⊥W | (Y, Z)
)
∧
(
X ⊥ Y |Z

)
=⇒ X ⊥ (Y,W ) |Z (Contraction)(

X ⊥ Y | (W,Z)
)
∧
(
X ⊥W | (Y, Z)

)
=⇒ X ⊥ (Y,W ) |Z (Intersection)

Note that the intersection property only holds for positive distributions (i.e., P (X = x) > 0 for all x).
1Take a look the chapter of statistics fundamentals of https://fabian.damken.net/summaries/cs/elective/vc/
statml/statml-summary.pdf.
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Monty Hall Problem

2.1.2 Inference

Statistical inference is concerned with computing all kinds of statistical properties given a model, e.g., the
probability of an event. This section covers same fundamental concepts needed to understand the later
chapters.

Information Theory

Information theory is trying to quantify how much information is encoded in some distribution P (X). The
central measure is entropy:

HP (X) = E
[
log(1/P (X))

]
=

∑
x∈val(X)

P (X) log
1

logP (X)
= −

∑
x∈val(X)

P (X) logP (X)

If the logarithm is of base two, the entropy encodes how much bits are required on average to encode X when
X follows the distribution P (X). Similarly, conditional entropy can be defined as

HP (X |Y ) = E
[
log(1/P (X |Y ))

]
= HP (X,Y )−HP (X)

where HP (X,Y ) is the joint entropy over X and Y . Like for probabilities, a chain rule of entropies is derivable:

HP (X,Y, Z) = HP (X) +HP (Y |X) +HP (Z |X,Y ).

To quantify (in)dependency between two variables X and Y , the mutual information

IP (X;Y ) = HP (X)−HP (X |Y )

can be used. This quantity is symmetric and is zero if and only if X and Y are independent.

2.1.3 Potentials

A potential is an alternative way of representing (conditional) probabilities aside from conditional probability
tables (CPTs). A potential ϕX,Y,Z is is a function that maps each configuration (x, y, z) ∈ val(X)×val(Y )×val(Z)
to a non-negative real number. The set of random variables targeted by a potential is its domain, i.e.,
dom fX,Y,Z = {X,Y, Z}. Note that a (conditional) probability distribution is a special case of potentials where
the potential is normalized. Vice versa, a potential can always be normalized into a CPT. This is illustrated in
Figure 2.1.
Similar to CPTs, potentials can be multiplied by pairing up the entries and marginalized by summing up

the corresponding entries. Compared to CPTs, it is not necessary to normalize a potential into a probability
distribution afterwards, easing some calculations.
Potentials will come in handy later on when covering inference in junction trees (section 5.4).
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P (X = x |Y = y, Z = z) x = f x = t

(Y,Z) = (t, t) 0.8 0.2
(Y,Z) = (t, f) 0.5 0.5
(Y,Z) = (t, t) 0.2 0.8
(Y,Z) = (t, f) 0.7 0.3

←→

X Y Z ϕX,Y,Z ϕ̃X,Y,Z

t t t 0.8 8
t t f 0.2 2
t f t 0.5 5
t f f 0.5 5
f t t 0.2 2
f t f 0.8 8
f f t 0.7 7
f f f 0.3 3

Figure 2.1: Comparison of a CPT (left) and the corresponding potential (right). The rightmost column in
the potential ϕ̃ is equivalent to ϕ as it can be normalized accordingly.
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3 Bayesian Networks

Bayesian networks provide a compact representation for exponentially-large distribution by exploiting con-
ditional independencies. When representing a joint distribution P (X1, X2, . . . , Xn) with |val(Xi)| = k for
simplicity, the CPT has kn− 1 entries1! But lots of information is redundant in the joint if some of the variables
exhibit independencies. Assume, for instance, that all subsets X ,Y ⊆ {X1, X2, . . . , Xn} are independent
(X ⊥ Y). Then the joint can be written as

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi),

requiring only n(k − 1) ∈ O(n) parameters! This is linear in the number of random variables! While this
assumption seems rather simplistic, it is used with success in practice: this is the assumption of the naive
Bayed classifier covered in section 3.1.

3.1 The Naive Bayes Model

In the naive Bayes model, it is assumed that some feature random variables {X1, X2, . . . , Xn} are all condition-
ally independent given the class C; ∀X ,Y ⊆ {X1, X2, . . . , Xn} : X ⊥ Y |C. The joint distribution is therefore
simply

P (X1, X2, . . . , Xn, C) = P (X)
n∏

i=1

P (Xi). (3.1)

Using Bayesian networks, the independencies are represented using a graph as shown in Figure 3.1.
To classify a new instance x (a vector composed of the individual instances of X1, X2, . . . , Xn), the class

c ∈ val(C) with the highest posterior probability is selected:

cMAP = argmax
c∈val(C)

P (c |x) = argmax
c∈val(C)

P (x | c)P (c)
P (x)

= argmax
c∈val(C)

P (x | c)P (c) = argmax
c∈val(C)

P (X)
n∏

i=1

P (Xi).

1The −1 comes from the requirement of the probability being normalized, hence the probability of the “last” configuration is implicit.

C

X3X2X1 · · · Xn

Figure 3.1: Bayesian network for the naive Bayes classifier.
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3.1.1 Maximum Likelihood Parameter Estimation

To learn the probabilities required to perform classification using the naive Bayes model, the straightforward
approach is to use maximum likelihood estimates, i.e., the frequencies in the data:

P̂ (C = cj) =
N(C = cj)

N
P̂ (Xi = xik | cj) =

N(Xi = xik, C = Cj)

N(C = cj)
.

here, N(C = cj) is the number of data points where the class is cj and N(Xi = xik, C = Cj) is the number of
data points with class cj and value xik in the i-th feature. Using the identity function 1[ψ] that is one iff ψ is
true and zero otherwise, these quantities can be expressed as

N(C = cj) =
∑

((x1,x2,...,xn),c)∈D

1[c = cj ] N(Xi = xik, C = Cj) =
∑

(x1,x2,...,xn,c)∈D

1[xi = xik, c = cj ]

where D ⊆ val(X1)× val(X2)× · · · × val(Xn)× val(C) is the data set. Note that the formality of the data set
and values is quite rigorous in this section. From now on, the notation will be abused from time to time for
brevity.

This estimation method poses a major challenge: if no instances have been observed of a given feature/class-
configuration, the evidence is zero and no matter how high other evidence is in the joint (3.1), the joint will
be zero. This problem can be reducing by smoothing the distributions to avoid overfitting,

P̂ (Xi = xik | cj) =
N(Xi = xik, C = Cj) +m

(
N(Xi = xik)/N

)
N(C = cj) +m

,

where m controls the extend of smoothing and is a hyper-parameter.

3.1.2 Application

Even though the assumption of all features being conditionally independent is often false, the naive Bayes
classifier turns out to be quite effective in practice. While not being the best classification method, is usually
serves as a good and dependable baseline. If the assumption holds, the Bayes classifier is optimal (and can be
tuned for different misclassification costs, for example).

Also, it is very fast: learning is done in a single pass over the data (by counting) and testing is linear in the
number of attributes and data size. For the same reason (small CPTs), it requires very little storage, making it
suitable for on-device classification.

3.2 Definition and Independence Assumptions

After some introductory treatment of the naive Bayes classifier and its associated Bayesian network, this section
now focuses on a more rigorous treatment of the independencies that are actually encoded in a Bayesian
network and a formal definition of what a Bayesian network is.

The key idea for Bayesian networks is the incorporation of independence assumptions into their structure.
A formal Bayesian network consists of the following components:

• Set of random variables {X1, X2, . . . , Xn}.

• Directed acyclic graph (DAG) encoding the (in-) dependencies.

12



• Conditional probability table for each random variable, P (Xi | Pa(Xi)
). Pa(Xi) contains all parents of

the random variable in the given DAG.
Then, the joint distribution is given by

P (X1, X2, . . . , Xn) =
n∏

i=1

P
(
Xi | Pa(Xi)

) (3.2)

and the local Markov assumption holds. The local Markov assumption states that a random variable Xi is
independent of all its non-descendants ND(Xi) given its parents Pa(Xi):

Xi ⊥ ND(Xi) | Pa(Xi).

Let Ch(Xi) be the children of Xi, then Xi’s non-descendants are all random variables that are not in Des(Xi),
Xi’s descendants:

ND(Xi) = {X1, X2, . . . , Xn} \Des(Xi), Des(Xi) = Ch(Xi) ∪
⋃

Xj∈Ch(Xi)

Des(Xj).

This is a recursive definition for which Des(Xi) = ∅ holds iff Xi does not have children.

3.2.1 “Explaining Away” / Berkson’s Paradox

Berkson’s paradox describe the phenomenon that, by the local Markov assumption, for a network like

X Y

Z

the independence X ⊥ Y holds but X ⊥ Y |Z does not. This implies that information can flow from X to Y
iff Z is given, i.e., having evidence on either X or Y is already sufficient to explain the evidence on Z:

P (X = x |Z = z, Y = y) ≤ P (X = x |Z = z).

3.2.2 Representation Theorem

All this work on independencies raise the question of whether it is actually worth it: what distributions can
be represented using a Bayesian network? And what networks are required to represent a distribution?
Also, what other independencies apart from the local Markov assumption are encoded in a network? Some
independencies can certainly be derived using the relations presented in subsection 2.1.1. Let P be the
real distribution and let I(P ) be the independencies encoded in the true distribution. Similarly, let Iℓ(G)
be the local independencies (induces by the local Markov assumption) encoded in a graph G. Then the key
assumption of Bayesian networks is that

Iℓ(G) ⊆ I(P ).

That is, the local independencies only capture such that are actual present in the true distribution. If this
relation holds, G is said to be an I-map (independency map) of P .

Theorem The representation theorem states that G if an I-map of P if and only if P factorizes according to
G via (3.2).
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A B D D

Figure 3.2: Illustration of a Bayesian network capturing more independencies than induced by the lo-
cal Markov assumption. In this BN, the local Markov assumption encodes Iℓ(G) = {B ⊥
A |A,C ⊥ (A,B) |B,D ⊥ (A,B,C) |C }. However, also A ⊥ D |C is a captured independency,
for example.

Proof The proof is split into proofing “if” and “only if”.
“if”:
“only if”: Assume, w.l.o.g., a topological orderingX1, X2, . . . , Xn where j < i for all childrenXj of some ran-

dom variableXi. Applying the chain rule to the joint yieldsP (X1, X2, . . . , Xn) =
∏n

i=1 P (X1 |X1, X2, . . . , Xi−1).
By the topological ordering, Pa(X1) ⊆ {X1, X2, . . . , Xi−1} and hence, using the local Markov assumption,
P (Xi |X1, X2, . . . , Xi−1) = P

(
X1 | Pa(Xi)

). Therefore, P factorized according to (3.2).

3.2.3 “Adding Edges Does Not Hurt”

Theorem Let G be an I-map for P . Then any DAG G′ having the same directed edges as G, then G′ is also
an I-map of P .
From this theorem it follows that

• G′ is strictly more expressive than G by capturing more independencies, and

• adding edges to G still results in an I-map.

Proof Idea Let Iℓ(G) ⊆ I(P ). To show that Iℓ(G′) ⊆ I(P ) holds, it is enough to show Iℓ(G
′) ⊊ Iℓ(G). Note

that is enough to show that this property holds if a single edge is added as adding two edges can be understood
as two modifications, resulting in a third graph G′′. It therefore follows from Iℓ(G

′′) ⊊ Iℓ(G
′) ⊆ Iℓ(G) that

also Iℓ(G′′) ⊊ Iℓ(G).
Let X and Y be some random variables of G such that Y ̸∈ PaG(X). Then adding an edge Y → X only

removes local independencies, but does not induce new ones.

3.3 Encoded Independencies

So far, only local independencies have been considered. However, a Bayesian network encodes even more
dependencies by applying the algebra of conditional independencies (subsection 2.1.1; see Figure 3.2 for an
example).

The findings of this section are summarized in Figure 3.3 which gives an overview of the different variants
to getting the set of independencies (read this section first before inspecting the figure).

3.3.1 Dependency Structures

In a three-node BN, four types of structures are possible. The first, second, and third are indirect causal and
evidential effects and a common cause, respectively:

X Y Z X Y Z X Z Y
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G

I(G)

Iℓ(G)

I(P )

Reads

d-Separation

Algebra of Ind.

⊆

⊆ / =

Figure 3.3: Illustration of different methods to capture the independencies of a distribution. Note that I(G)
and I(P ) are equal (i.e., P is faithful to G) for almost all P that factor over G.

In both cases, the conditional independence X ⊥ Y |Z holds, but not the simple independence X ⊥ Y .
The last and most special structure is a v-structure, where two variables have a common effect:

X Z Y

In this case, the independencies are inverted: the simple independence X ⊥ Y holds, but X ⊥ Y |Z does not.
This is the same effect as the “explain away” phenomenon / Berkson’s paradox (subsection 3.2.1).

3.3.2 d-Separation

d-Separation (dependence separation) is a principled way of finding all independencies modeled by a Bayesian
network. The main component are trails. A trail is a non-cyclic path X ′1 ↔ X ′2 ↔ · · · ↔ X ′k from one random
variable X ′1 to another X ′k. Note that a trail can also be along an edge in opposite order (i.e., the trail itself is
undirected) and that every edge and note can only be visited once. For example, the network

A B

C D

has the following trails:

• A→ B, A→ C ← D ← B; A→ C, A→ B → D → C; A→ B → D, A→ C ← D

• B ← A, B → D → C ← A; B ← A→ C, B → D → C; B → D, B ← A→ C ← D

• C ← A, C ← D ← B ← A; C ← A→ B, C ← D ← B; C ← D, C ← A→ B → D

• D ← B ← A, D → C ← A; D ← B, D → C ← A→ B; D → C, D ← B ← A→ C

Note that as trails are themselves undirected, the graph itself really has half as many trails, but they are kept
for consistency.
d-Separation now uses these trails to extract independencies. Consider any trail X ′1 ↔ X ′2 ↔ · · · ↔ X ′k

between two variables X ′1 and X ′k this trail is active if for each triplet X ′i−1 ↔ X ′i ↔ X ′i+1, the following holds:
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• for Xi−1 → Xi → Xi+1, Xi is not observed.

• for Xi−1 ← Xi ← Xi+1, Xi is not observed.

• for Xi−1 ← Xi → Xi+1, Xi is not observed.

• for Xi−1 → Xi ← Xi+1, Xi or one of its descendants is observed.

Theorem Two variables X and Y are independent given a set of variables Z if there is no active trail
between X and Y if Z are observed. They are said to be d-separated. The set of independencies obtained via
d-separation is called I(G).

Soundness

Theorem d-Seperation is sound. That is, if P factorizes over G, then I(G) ⊆ I(P ).
This means that d-separation only captured independencies that the true distributions exhibits.

Proof

Completeness

A distribution P is said to be faithful if it does not have independencies that cannot be read from G.

Theorem For almost all distributions P that factorize over G, I(G) = I(P ). “Almost all” means that the
possible distributions are a set of measure zero parametrizations of the CPTs.

Hence, the Bayesian network is usually sufficient for capturing all independence properties of the distribution!
But this only holds for complete independence, but there might be context-specific independencies that are
not captured.

Proof

3.3.3 Context-Specific Independence (CSI)

As already said, d-separation only captures complete independencies, i.e., once for which

∀x,∈ val(X), y ∈ val(Y ), z ∈ (Z) : (X = x ⊥ Y = y |Z = z)

holds but context-specific independencies,

∃x,∈ val(X), y ∈ val(Y ), z ∈ (Z) : (X = x ⊥ Y = y |Z = z),

are not captured.
One option for representing CSIs are Tree CPDs. Tree CPDs encode a distribution P (X | Pa(X)

) using a
decision-tree like structure, where the paths are an assignment of (a subset of) Pa(X) and leaves represent
the distributions given the assignments on the path. This way, representation size can be drastically reduced
when CSIs are present.

Another variant where CSIs occur is determinism. While determinism already makes the CPT sparse, it has
even greater influences on inference as propagating the zeros often leads to a bunch of new zeros.

16



3.3.4 The Bayes’ Ball Algorithm

The Bayes’ ball algorithm is a algorithmic approach to applying d-separation.

3.4 SOTA Modal

Current state-of-the-art (SOTA) models are often characterized by richness in their local structures (determin-
ism, CSI), massive sizes (thousand of variables), and high connectivity (treewidth, see ??). These developments
are enabled by high-level modeling tools (relational and first-order logic), the overall advancement in machine
learning, and new application areas (e.g., bioinformatics and sensor networks).
In these big models, it is a must to exploit local and relational structure!
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4 Inference

Inference is concerned with answering statistical queries in a probabilistic model. As this summary is on
probabilistic model, it is concerned with inference in graphical models. However, inference in Bayesian
networks is—in general—pretty hopeless aka. NP-hard (even approximate inference). In practice, however,
special structures can be exploited producing many effective (approximate) inference algorithms. This chapter
covers exact inference whereas approximate inference is covered later in chapter 8.
A general probabilistic query is P (X | e) computing some probability given some evidence e. The straight-

forward way to compute the conditional is to directly use its definition,

P (X | e) = P (X, e)

P (e)
.

This requires computing the joint distribution and marginalizing out X to get the normalization factor. In
general, such a computation has exponential complexity in the number of random variables!
For all complexity arguments in the following sections, let k be the number of configurations of a single

random variable, k = |val(X)|, and assume that all random variables have the same number of values.

4.1 Chain Models

The simplest BN to perform efficient exact inference in is a chain model

X1 X2 X3 · · · Xn

that factors as
P (X1, X2, . . . , Xn) = P (X1)

n∏
i=2

P (Xi |Xi−1).

However, to computing P (Xn) still requires an exponential number of operations, O(kn):

P (Xn) =

marg.∑
X1

marg.∑
X2

· · ·
marg.∑
Xn−1

P (X1, X2, . . . , Xn−1, Xn)

=

marg.∑
X1

marg.∑
X2

· · ·
marg.∑
Xn−1

P (X1)P (X2 |X1) · · · P (Xn |Xn−1).

Instead, it is advisable to reverse the sums and to pull the independent factors out of the marginalization.
This corresponds to iteratively computing P (X1), P (X2), . . . , P (Xn):

P (Xi+1) =

marg.∑
Xi

P (Xi+1 |Xi)P (Xi).

This process is linear in the number of random variables and quadratic in the number of values of a random
variable, O(nk2)! Hence, at least for simple chain models, inference is tractable.
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4.2 Variable Elimination

Variable elimination extends the idea introduced in the chain models of pulling factors out of the marginal-
ization sums. To incorporate evidence e, the corresponding RVs are simply set to the respective values and
marginalization over these variables is removed. See section 8.2.1 in Data Mining and Machine Learning1 for a
more thorough treatment of this topic. By convention, the factor that appears by eliminating a variable X that
still depends on other RVs Y1, Y2, . . . , Yk is named fX(Y1, Y2, . . . , Yk). Pseudocode for variable elimination is
shown in algorithm 1.
One of the most important steps in variable elimination is pruning the non-active variables (line 2). This

means removing all random variables that are independent of all variables in X ∪E as the distributions over
these random variables simply reduce to a multiplication with 1, not changing the results. However, this can
reduce the number of required operations to a tractable amount.
The most important aspect determining the efficiency of variable elimination is, intuitively, the choice of

the elimination ordering (this is covered in more detail in section 4.5). For relatively simple networks like
polytrees2, inference is linear in representation size (i.e., in the number of entries across all CPTs)! In general,
however, variable elimination exponential in the number of variables in the intermediate factors—hence
its complexity is dominated by the largest intermediate factor. This again is discussed in more detail in
section 4.5.
While variable elimination on a general Bayesian network is still exponential in time w.r.t. the number of

variables in the intermediate factors, it is linear (in representation size!) in polytree networks.
Also note that variable elimination can also directly be applied to potentials. It is not required that the

original factors actually represent CPTs.

Algorithm 1: Variable Elimination
Input: Bayesian network with RVs X1, X2, . . . , Xn and query P (X |E = e)
Output: Probability P (X |E = e)

1 Instantiate evidence E = e.
2 Prune non-active variables (w.r.t. X ∪E), giving X1, X2, . . . , Xñ, ñ ≤ n.
3 Choose an ordering X1, X2, . . . , Xñ.
// Initialize factors:

4 F (0) ←
{
fi = P

(
Xi | Pa(Xi)

)
: i = 1, 2, . . . , ñ

}
5 for i = 1, 2, . . . , ñ do
6 if Xi ∈X ∪E then
7 skip

8 Collect factors f1, f2, . . . , fk ∈ F (i−1) containing Xi.
// Generate a new factor g by eliminating Xi:

9 g =
∑marg.

Xi

∏k
i=1 fj

// Replace factors in factor set:
10 F (i) ←

(
F (i−1) \ {f1, f2, . . . , fk}

)
∪ {g}

11 Read only remaining factor P (X,E = e) from F (ñ).
12 Normalize P (X,E = e) to get P (X |E = e).

1https://fabian.damken.net/summaries/cs/elective/iws/dmml/dmml-summary.pdf
2A polytree is the directed variant of a tree. That is, a DAG is a polytree if its underlying undirected graph is a tree.
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4.3 Abductive Inference

So far, only the calculation of a-posterior beliefs/probabilities has been covered. That is, computing queries of
the form P (X |E = e) (where E is a, possibly empty, set of evidence). While this type of inference is useful
in many cases (e.g., to perform predictions by computing the probability of an outcome, diagnosing a disease
by computing the probability given some symptoms, . . . ), it is also desirable to perform abductive inference.
Abductive inference is concerned with finding a configuration of a set of random variables that “best” explains
the evidence at hand. This can be done in two fashions:

• Most Probable Explanation (MPE): finding the most probable configuration of all variables in a Bayesian
network given some evidence.

• Maximum A Posteriori (MAP): finding the most probable configuration of a subset of variables in a
Bayesian network given some evidence.

Note that being able to perform either does not necessarily solve the other (i.e., the MPE cannot be found
by individually maximizing all probabilities for all variables and the MAP cannot be found by taking the
corresponding subset of the MPE). It is said that MPE and MAP are not consistent.

Finding (approximate) MPEs is quite straightforward by replacing the sums (marginalizations) in variable
elimination by max’s. In a second backward pass, the sums are replace by argmax-operators to find the
configuration. A pseudocode version of this approach is given in algorithm 2.

4.4 Complexity of Conditional Queries

In general, inference on conditional query P (X |E = e) is NP-hard. This can be shown by reducing 3-SAT to
inference in a Bayesian network. 3-SAT is concerned with the question whether a propositional formula (in
conjunctive normal form) with at most three literals per clause is satisfiable. For instance, is the following
formula satisfiable (with boolean X1, X2, . . . , X4)?

ψ = (¬X1 ∨X2 ∨X3) ∧ (X2 ∨ ¬X3 ∨X4) ∧ (X1 ∨ ¬X2) (4.1)
This problem is known to be NP-hard. This problem can be expressed using a Bayesian network:

C1 C2 C3 ψ

X1 X2

X3 X4

The CPTs of C1, C2, and C3 then encode the clauses of (4.1) and ψ summarizes them into a single random
variable. While it seems possible to just direct all random variables into ψ, this would make the reduction
non-polynomial, invalidating the proof of NP-hardness. By putting a prior P (Xi = t) = 0.5 over all (boolean)
RVs, satisfiability can be queried as P (ψ = t) > 0. Hence, if conditional inference would be tractable, 3-SAT
would be too. By contradiction, this shows that conditional inference is NP-hard. □

However, while NP-hard is already pretty hard, it can also be shown that inference is #P-complete involving
counting all satisfying configurations.

Even though this shows that inference is hard in the general case, it can be solved for problems with special
structures (which are very common). For these, efficient (exact) inference algorithms exist.
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Algorithm 2: Most Probable Explanations via Variable Elimination
Input: Bayesian network with RVs X1, X2, . . . , Xn and evidence E = e
Output: Most probable explanation x∗

1 Instantiate evidence E = e.
2 Prune non-active variables (w.r.t. X ∪E), giving X1, X2, . . . , Xñ, ñ ≤ n.
3 Choose an ordering X1, X2, . . . , Xñ.
// Initialize factors:

4 F (0) ←
{
fi = P

(
Xi | Pa(Xi)

)
: i = 1, 2, . . . , ñ

}
5 for i = 1, 2, . . . , ñ do
6 if Xi ∈ E then
7 skip

8 Collect factors f1, f2, . . . , fk ∈ F (i−1) containing Xi.
// Generate a new factor g by maximizing over Xi:

9 g = maxXi

∏k
i=1 fj

// Replace factors in factor set:
10 F (i) ←

(
F (i−1) \ {f1, f2, . . . , fk}

)
∪ {g}

// Initilize vector of MPE-values:
11 x∗ ∈ val(X1)× val(X2)× · · · × val(Xn)
12 for i = ñ, ñ− 1, . . . , 1 do
13 if Xi ∈ E then

// Copy evident value to result vector:
14 x∗i ← ei

15 else
// Compute argmax over Xi, incorporating the evidence and already determined values:

16 x∗i ← argmaxXi

∏
f∈Fi−1 f(x∗1:i−1, e)

17 Set pruned variables Xñ+1, Xñ+2, . . . , Xn so arbitrary values.
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X1

X2 X3

X4 X5 X6

(a) Bayesian Network

X1

X2 X3

X4 X5 X6

(b) Moral Graph

Figure 4.1: Example for creating a moral graph (right) from a Bayesian network (left) by moralizing. All
edges are turned into undirected edges and a moral link (depicted in red) has to be introduced
between the “unmarried” parentsX2 andX3 orX5.

X1

X2 X3

X4 X5 X6

(a) About to eliminateX3. The affected node and edges
are depicted in red.

X1

X2

X4 X5 X6

(b) After eliminatingX3. The introduces fill-ins are de-
picted in red.

Figure 4.2: Example for eliminating a variable in a moral graph.

4.5 Variable Elimination in Moral Graphs

The induces moral graph of a Bayesian network is an undirected graph where the members of each clique
correspond to the domain of a potential in the Bayesian network. To extract the moral graph from a Bayesian
network, it might be necessary to introduce moral links to fulfill this (defining) criterion. A moral link is be
introduced between unconnected parents of a node3. The rest of the moral graph is then given as the skeleton
(i.e., the underlying undirected graph of a DAG) of the network. An example is given in Figure 4.1. More
details on why this moral link is necessary are covered in section 5.1.
As variable elimination introduces new factors/potentials into the joint probability, these changes have

to be reflected in the moral graph after the elimination. If an elimination step introduces a potential with
random variables that have not yet been together in a potential, a fill-in is introduced to the moral graph
representing this new connection. An example of this process is shown in Figure 4.2. An elimination ordering
is said to be perfect if it does not introduce any fill-ins (see Figure 4.3 for an example with the same graph
used in Figure 4.2).

4.5.1 Complexity

As already pointed out in section 4.2, the driving factor of the complexity of VE is the number of variables
in the intermediate factors. Hence, for VE on moral graphs, the complexity is determined by the number of
variables in the domains of the potentials producing during the elimination. This leads to a set of domains

3The term “moralizing” has quite outdated origins and refers to the unmorality of “unmarried” parents.
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X1

X2 X3

X4 X5 X6

(a) About to eliminateX1.

X1

X2 X3

X4 X5 X6

(b) After eliminatingX1, about to eliminateX4.

X1

X2 X3

X4 X5 X6

(c) After eliminatingX4, about to eliminateX6.

X1

X2 X3

X4 X5 X6

(d) After eliminatingX6, about to eliminateX2.

X1

X2 X3

X4 X5 X6

(e) After eliminatingX2, about to eliminateX3.

X1

X2 X3

X4 X5 X6

(f) After eliminatingX3, elimination finished.

Figure 4.3: Example for a perfect elimination sequence executed in a moral graph. The variable that
should be eliminated is always depicted in red and is eliminated in the upcoming graph.
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X1

X2 X3

X4 X5 X6

Figure 4.4: Induced graph for the imperfect elimination ordering (X3, X4, X6, X1, X2, X5).

where all sets that are subsets of other sets can be removed (as they do not affect the complexity). For the
elimination ordering shown in Figure 4.3, these are, in order of appearance, the following sets:{

{X1, X2, X3}, {X2, X4}, {X3, X6}, {X2, X3, X5}, {X3, X5}, {X5}
}

−→
{
{X1, X2, X3}, {X2, X4}, {X3, X6}, {X2, X3, X5}

}
It turns out that all perfect elimination orderings (i.e., those that do not produce fill-ins), have the same set
of potential domains. Also, all perfect elimination orderings ending some random variable X are optimal in
terms of computing P (X).

For the imperfect elimination ordering (X3, X4, X6, X1, X2, X5) (for which the first elimination is shown in
Figure 4.2), the following sets of potentials are created:{

{X1, X2, X3, X5, X6}, {X2, X4}, {X1, X2, X5, X6}, {X1, X2, X5}, {X2, X5}, {X5}
}

−→
{
{X1, X2, X3, X5, X6}, {X2, X4}

}
Intuitively, the number of items of this clique are closely related to the complexity of VE (a small clique set
corresponds to large connectivity in the graph, hence large factors).

Induced Graph and Treewidth

To further formalize the aforementioned idea, the notion of an induced graph is introduced. The induced graph
of some moral graph is the graph including all connections of the clique set, i.e., the moral graph with all
fill-ins inserted. Hence, the moral graph is also a sub-graph of the induced graph. For the perfect elimination
ordering of Figure 4.3, the induced graph is also the moral graph (as no fill-ins were added). However, for the
imperfect elimination sequence (X3, X4, X6, X1, X2, X5), the induced graph has more connections as shown
in Figure 4.4.
It is clear that the size of the maximum clique differs for the perfect and imperfect elimination sequence.

This quantity (minus one) is called the treewidth of a graph and is called induced treewidth for a Bayesian
network combined with an elimination ordering (which highly influences the treewidth of the moral graph).
Hence, finding a good elimination ordering is equivalent to minimizing the treewidth of the induced graph.

(Poly-) Trees

A direct consequence of the tight coupling between the complexity of VE and the treewidth is that inference
on a “tree” Bayesian network (one in which every node has at most one parent) is linear in the number of
variables (as the treewidth is 1 for a tree)! Finding an elimination ordering is also straightforward: by starting
from the leaves, each factor only involves two RVs. It is also guaranteed that a tree has a leave, so the ordering
cannot stall.
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Graph Type
Query General Low Treewidth

Probabilistic Inference #P-Complete Easy
Most Probable Explanation (MPE) NP-Complete Easy
Maximum A Posteriori (MAP) NPPP-Complete NP-Hard

For approximate probabilistic inference, hardness depends on the error:
Absolute Error, |P̂ − P | ≤ ϵ: NP-Hard for ϵ < 0.5

Relative Error, |P̂ − P |/P ≤ ϵ: NP-Hard for ϵ > 0

Table 4.1: Summary of complexities for various inference queries.

For polytree Bayesian networks (ones of which the skeleton is a tree but a node may have more than
one parent), the treewidth is 2 and inference is linear in CPT size (i.e., representation size of the network).
Opposed to a tree BN, the treewidth is not 1 as moral links have to be added between “unmarried” parents.

General Networks

For general networks, the treewidth is usually greater than 1. In fact, for any graph that has a cycle, the
treewidth is at least 2. Form graph theory, it is known that finding an optimal ordering minimizing the
treewidth is NP-hard, so again, in general, inference is intractable. However, there are some neat heuristics
that can be applied for finding “good” (but not necessarily optimal) orderings. There also exist algorithm
that—if the graph has low treewidth—find the optimal ordering in polynomial time. Also, incorporating CSIs
can reduce the complexity to be tractable even for graphs with large treewidth.
A summary of the complexity results is given in Table 4.1.
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5 Markov Random Fields

Bayesian networks are not allowed to have cycles as they would not make any sense. Another variant of PGMs,
Markov Random Fields (MRFs), allow cycles and are undirected. Instead of encoding dependencies, the edges
in a Markov network encode which random variables occur together in a potential. For example, the Markov
network

X1 X2 X3

X4 X5

corresponds to the distribution

P (X1, X2, X3, X4, X5) ∝ ϕ(X1, X2)ϕ(X2, X3)ϕ(X2, X4)ϕ(X3, X5)ϕ(X4, X5)

up to normalization. In general, a distribution P (X1, X2, . . . , Xn) specified by a MRF G factors as

P (X1, X2, . . . , Xn) =
1

Z

∏
C ∈Cliques(G)

ϕC(X1, X2, . . . , Xn)

where Cliques(G) is the set of maximal cliques in G and 1/Z is the normalization factor. In an MRF, the
Markov property holds: two sets of random variables, X and Y are independent given a separating subset Z
(X ⊥ Y |Z). This subset has the property that every path from any variable in X to any variable in Y contains
a variable from Z.

Note that a random variable X is independent from all other variables Y in the network givens its parents,
its children, and, to care about v-structures, its children’s parents:

X ⊥ Y |

(
Pa(X) ∪ Ch(X) ∪

( ⋃
Z∈Ch(X)

Pa(Z)

))

This set of variables is known as the Markov blanketM(X) of X.

Proof

5.1 Bayesian Networks as MRFs

It is possible to convert Bayesian networks into MRFs for leveraging the theory that evolved around them. This
process was already introduced as moralizing before (section 4.5). This section builds up a more formal view
on how the addition of a moral link is necessary. The following paragraphs show to convert the fundamental
building blocks (pair, chain, common cause, and common effect) of a Bayesian network into a Markov network.
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Pair

X Y −→ X Y

This conversion makes sense as from the Bayesian model,

P (X,Y ) = P (X)P (Y |X),

and from the Markov network,
P (X,Y ) ∝ ϕ(X,Y )

with ϕ(X,Y ) ∝ P (X)P (Y |X).

Chain

X Y Z −→ X Y Z

Like for the pair of variables, the joint probability is

P (X,Y, Z) = P (X)P (Y |X)P (Z |Y )

by the Bayesian model and
P (X,Y, Z) ∝ ϕ(X,Y )ϕ(Y,Z)

by the Markov network with ϕ(X,Y ) ∝ P (X)P (Y |X) and ϕ(Y,Z) ∝ P (Z |Y ). Note that the parametrization
of the potentials is not unique.

Common Cause

X Y Z −→ X Y Z

For a common cause, the conversion is again similar to the chain model. By the Bayesian network,

P (X,Y, Z) = P (X |Y )P (Y )P (Z |Y )

and by the Markov network,
P (X,Y, Z) ∝ ϕ(X,Y )ϕ(Y,Z)

with ϕ(X,Y ) ∝ P (X |Y )P (Y ) and ϕ(Y,Z) ∝ P (Z |Y ). Note again that the parametrization is not unique.

Common Effect

X Y Z −→ X Y Z

For the v-structure, the conversion is a tad more complicated. By the Bayesian network,

P (X,Y, Z) = P (X)P (Y |X,Z)P (Z).

But if the moral link (depicted in red) would not be present, the Markov network would model the distribution
as

P (X,Y, Z) = ϕ(X,Y )P (Y,Z).
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However, this would entail X ⊥ Y |Z which is—prominently as Berkson’s paradox—not true. Hence, a moral
link has to be included to ensure that the said conditional independency does not hold. With the moral link,
the Markov network entails

P (X,Y, Z) ∝ ϕ(X,Y )ϕ(Y, Z)ϕ(X,Z).

Note that this formulation does not encode the same independencies: in the Markov network formulation,
X ⊥ Y does not hold anymore. However, it is more important to not capture invalid independencies than
missing out on some.
This observation depends on the fact that two variables X and Y are conditionally dependent given Z if

and only if their distribution P (X,Y, Z) can be written as P (X,Y, Z) = ϕ(X,Y )ϕ(Y,Z) with some ϕ(·).

5.2 Triangulated Graphs and Simplicial Nodes

For the upcoming sections, some nomenclature is needed:
• A graph is triangulated if it has a perfect elimination ordering (i.e., one that does not introduce any

fill-inds).
• A node is simplicial if its family (itself in addition to its neighbors) is equivalent to its maximum clique.

It follows that in a triangulated graph, the elimination of a simplicial node again yields a triangulated graph.
Also, every triangulated graph (with at least two nodes) has at least two simplicial nodes. Hence, it directly
follows that a perfect elimination ordering exists for every random variable in the graph.
Note that it is possible to triangulate every graph by applying any elimination ordering and consider the

induced graph instead. However, while this creates a triangulated graph, it does not induce high-performance
inference as the produces graph might have very large treewidth!

5.3 Join Trees

A join tree is a special kind of tree where each node (also called cluster in join trees) holds a set of variables.
Additionally, the running intersection property (RIP) holds: for each pair of nodes, X and Y, each node along
each path between the two nodes contains the intersection X ∩ Y. An example is shown in Figure 5.1. It can
be shown that if the (maximum) cliques of a undirected graph can be organized into a join tree, then the
graph is triangulated and vice versa.

5.3.1 Markov Network as a Join Tree: Junction Tree

Organizing a triangulated graph into a join tree is straightforward by exploiting the special properties of such
a graph. Pseudocode for this process is given in algorithm 3 and. A join tree GJ built from a Markov network
G′ also models the joint distribution as

P (X1, X2, . . . , Xn) =

∏
C ∈Cliques(GJ )

ϕC(X1, X2, . . . , Xn)∏
S ∈ Sep(Gj)

ϕS(X1, X2, . . . , Xn)

That is, the joint distribution is the product of the clique potentials divided by the product of the separator
potentials.

Proof
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{B,C,D,E}

{A,B,C,D} {D,E, F, I}

{B,C,D,G}

{C,H,G, J}

(a) Join Tree

{B,C,D,E}

{A,B,C,D} {D,E, F, I}

{B,C,D,G}

{C,H,G, J}

(b) No Join Tree

Figure 5.1: Illustration of a join tree. The left is a join tree, but the right is not as on the path between
{A,B,C,D} and {C,H,G, J} has to contain {C} in every node, which is not a subset of
{D,E, F, I}.

Algorithm 3: Triangulated, Undirected Graph→ Join Tree
Input: Triangulated undirected graph G with random variables X1, X2, . . . , Xn

Output: Join tree with clique and separator nodes
1 Initialize set of nodes X .
2 Initialize count of eliminated nodes n← 0
3 while X is not empty do
4 Pop simplicial node X from X .

// Construct set of variables to eliminate:
5 E ←

{
Y ∈ Family(X) : Family(Y ) ⊆ Family(X)

}.
6 Eliminate all variables in E .

// Increment counter for number of eliminated variables:
7 n← n+ |E|

// Create clique and seperator nodes for X:
8 Vn ← Family(X)
9 Sn ← Family(X) \ E

10 Connect Vn and Sn.
11 Connect each separator Si to exactly one clique Vj with j > i and Si ⊆ Vj .
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X1

X2 X3

X4 X5 X6

(a) Markov Network

V6
{X2, X3, X5}

S1
{X2, X3}

S2
{X2}

S3
{X3}

V1
{X1, X2, X3}

V2
{X2, X4}

V3
{X3, X6}

(b) Junction Tree

Figure 5.2: Example of the junction tree (right) produced using algorithm 3 with the elimination ordering
(X1, X4, X6, X2, X3, X5) showed in Figure 4.3.

5.4 Junction Trees

A junction tree of a Markov network is a join tree for which each factor ϕ in the Markov network is associated
to a cluster V in the join tree such that domϕ ⊆ V . This is called the family preservation property of junction
trees. Such a join tree can, for example, be generated using algorithm 3 if an elimination ordering is given;
see Figure 5.2 for an example. However, it is not necessary to build up a triangulated graph beforehand in
general (it would be, for example, possible to create a junction tree with a node containing all nodes of the
original tree; however, this would be useless as it does not leverage any theory of junction trees at all).
Ideally, the clusters are as small and modular as possible. Unfortunately, it is NP-hard to find the optimal

tree. . .However, some useful heuristics and special cases exists. For example, tree-BNs can directly be converted
to an efficient junction tree by converting each edge into a cluster.

5.4.1 Inference

To perform inference in a junction tree, each node sends exactly one message to exactly one of its neighbors
once it has received messages from all its other neighbors. Hence, message passing must start at the leaves of
the tree. To define a leave, however, first an arbitrary root node must be picked. Messages are then collected
at this node and afterwards distributed back across the tree to the leaves. After this process, all clusters have
the relevant information to compute the potential for its variables.
To pass messages between the clusters, each separator Si has two “mailboxes” ϕ−→

Si
and ϕ←−

Si
, one for the

forward- and one for the backward-pass, respectively. That is, ϕ−→
Si

is filled with messages flowing from the
leaves to the root while ϕ←−

Si
is filled with messages flowing from the root to the leaves. Note that from the

construction of the junction tree, each separator has exactly two neighboring clusters, making the message
boxes unambiguous. Each clique Ci is associated with a potential ϕCi that initially holds the potential of the
clique in the Markov network1 and after running message passing holds the marginal potential for domϕCi .
All of this is illustrated in Figure 5.3.

For the complete pseudocode, see algorithm 4.

1For a junction tree stemming from a Bayesian network, this is the product of the potentials forming a clique in the Markov network.
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Algorithm 4: Junction Tree Message Passing
Input: Junction tree with clusters Ci and separators Si
Output: Probabilities P (Ci) for each cluster Ci

1 Initialize all separator potentials to one.
2 Initialize all cluster potentials to the Markov networks’ clique potentials.
3 Choose a root node.
// Forward Pass

4 foreach cluster or separator Ci, Si whose children were processed do
5 if a cluster was chosen then

// Update cluster potential:
6 ϕCi ← ϕCi

∏
Sj∈Ch(Ci)

ϕ−→
Sj

7 if a separator was chosen then
8 Let Cj be the child cluster of Si.

// Update separator potential:
9 ϕ−→

Si
←
∑marg.

Cj\Si
ϕCj

// Backward Pass
10 foreach cluster or separator Ci, Si whose parents were processed do
11 if a cluster was chosen then

// Update cluster potential:
12 ϕCi ← ϕCi

∏
Sj∈Pa(Ci)

ϕ←−
Sj

13 if a separator was chosen then
14 Let Cj be the parent cluster of Si.

// Update separator potential:
15 ϕ←−

Si
←
∑marg.

Cj\Si
ϕCj

16 Normalize potentials at all clusters Ci to get P (Ci).

V6 = {X2, X3, X5}
ϕC6 = P (X5 |X2, X3)

S1 = {X2, X3}
↓ ψ−→

S1
↑ ψ←−

S1

S2 = {X2}
↓ ψ←−

S2
↑ ψ−→

S2

S3 = {X3}
↓ ψ←−

S3
↑ ψ−→

S3

V1 = {X1, X2, X3}
ϕC1 = P (X1)P (X2 |X1)P (X3 |X1)

V2 = {X2, X4}
ϕC2 = P (X4 |X2)

V3 = {X3, X6}
ϕC3 = P (X6 |X3)

Figure 5.3: Illustration of the message boxes and potentials used for message passing in junction trees,
based on the junction tree shown in Figure 5.2. For this tree, V1 is chosen as the root node. The
arrow directions depict the forward pass, the backward pass goes in reverse.
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6 Learning

Until now, it was assumed that both the network structure and the CPTs are given somehow. This chapter is
concerned with learning these from data. It is important to be able to learn structures from data as usually, no
expert is available that can craft a network by hand or she is really expensive. And in the age of big data, data
is cheap and huge amounts of data are available.
Learning Bayesian network is especially appealing as detecting and modeling conditional independencies

captures the structure of many real-world distributions and can lead to knowledge discovery by capturing
causal relationships. Also, the learned model can be used for handling missing data and hidden variables.

In a complete dataset, every data point has the values for all attributes that are getting investigated. On the
other hand, incomplete datasets lack some values of random variables (this is usually the case in real-world
data. . . ). Also, a special kind of incompleteness, are hidden variables. Hidden variables never have assigned
values in the whole dataset. One example for this is the cluster ID in an unsupervised clustering problem.
They can also present a low-dimensional embedding that summarizes some other variables and separates
them from a second set of RVs (dimensionality reduction).
The relation of the different problem types are summarized in Table 6.1.

6.1 Parameter Estimation

In parameter estimation, it is assumed that the structure of the Bayesian network (i.e., the random variables
and dependencies between them) is fixed and only the entries of the CPTs have to be estimated. This field
further subdivides into the cases of complete and incomplete data.

6.1.1 Known Structure, Complete Data

With known structure and complete data, the problem simply reduces to basically counting. The most basic
method to do so are maximum likelihood estimators (where the likelihood can be computed using the Bayesian
network). Some advantages of ML estimated are that they are (often) intuitive, consistent (the estimate
converges to the best possible value with increasing number of data points), and asymptotic efficiency (given
a dataset, the estimate is as close as possible to the true value).

Observed Fixed Structure Fixed Variables Hidden Variables

Fully Easy (Counting, MLE) Selection of Edges —
Partially Numerical Optimization

(difficult for large networks)
Encompasses for Difficult Subproblem

(only structural EM known)
Scientific
Discovery

Table 6.1: Overview over different learning problems and solution approaches.
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Decomposability of the Likelihood

An important property of the likelihood for a Bayesian network is that it is decomposable. Let θi be the CPT of
P
(
Xi | Pa(Xi)

) and let x(1),x(2), . . . ,x(N) be the data points. Then the log-likelihood is

logP (x(1),x(2), . . . ,x(N) | θ1, θ2, . . . , θn) =
N∑
j=1

logP (x(j) | θj) =
N∑
j=1

n∑
i=1

logP
(
Xi = x

(j)
i

∣∣ Pa(Xi), θj
)
.

By swapping the sums, the log-likelihood can be rewritten as

logP (x(1),x(2), . . . ,x(N) | θ1, θ2, . . . , θn) =
n∑

i=1

logP (x(1),x(2), . . . ,x(N) | θi).

Hence, it is possible to maximize each likelihood function independently and subsequently combine the
solutions to get an ML estimate. This allows efficient solutions by distributing the calculations.

Likelihood for (Conditional) and Multinomials

An important special case for the CPTs are (conditional) multinomials, i.e., distributions for which

P (X = k) = θk

where k = 1, 2, . . . , |val(X)| are indices for the values of X. Maximizing the likelihood of this distribution
yields the solution

θ∗k =
Nk

N

where Nk is the number of data points for which X = k, i.e., Nk =
∑

x 1[x = k] and N is the total number of
data points.
For conditional multinomials, the distribution has the form P (X = k |Y = ℓ) = θk|ℓ. Similarly, the ML

solution is
θk|ℓ =

Nk|ℓ

Nℓ
(6.1)

where Nk|ℓ is the number of data points for which X = k and Y = ℓ and Nℓ is the number of data points for
which Nℓ. Hence, conditional multinomials are completely analogous to non-conditional multinomials but the
dataset is constrained to the respective conditional values.

Proof

6.1.2 Known Structure, Incomplete Data (Expectation-Maximization)

When the dataset is incomplete, the algorithm somehow has to deal with the incompleteness. One idea is to
use an EM algorithm to complete the data in the E-step and to estimate the parameters in the M-step. For
multinomial distributions and discrete data, this involves computing expected counts in the E-step and using
the ML estimated (6.1) in the M-step to tune the model. Let x(1),x(2), . . . ,x(N) be the data points, then the
expected count E[Nk | ℓ], where Nk | ℓ would be the number of data points for which X = k and Y = ℓ The
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expected count E[Nk|ℓ], where Nk|ℓ would be the number of data points for which X = k and Y = ℓ holds
(assuming a distribution P (X = k |Y = ℓ) = θk|ℓ), is

E[Nk|ℓ] =
N∑
i=1

P (k, ℓ |x(i)). (6.2)

If x(i) is complete, the probability would reduce to 1[x(i)x = k ∧ x(i)y = ℓ], i.e., counting. However, if the data is
not complete, inference has to be run to actually compute the probability. Using the expected counts, the
parameters can easily be estimated in the M-step using

θk|ℓ =
E[Nk|ℓ]

E[Nℓ]
,

where E[Nℓ] is analogous to (6.2).
In practice, some more things are needed to apply EM. Firstly, the parameters have to be initialized some

how (e.g., randomly, or as a best guess from other sources, by estimating from just the complete data points,
. . . ). Secondly, a stopping criterion has to be defined (only small changes in the likelihood or parameter values,
for example). Thirdly, bad local maxima (which the EM algorithm is prone to converge to) have to be avoided
(e.g., by running multiple times, pruning unpromising runs soon, . . . ). Also, various methods are available to
speed up convergence.

6.1.3 Gradient Ascent

An alternative, rather bruteforcy method for dealing with incomplete data is to just ignore it and use that the
gradient

∂

∂θk | ℓ
logP (x(1),x(2), . . . ,x(N) |Θ) =

1

θk | ℓ

N∑
j=1

logP (k, ℓ |x(i),Θ)

can be computed in closed form. Then, gradient ascent can be applied. This has the advantage that training is
well-known from training neural networks, coming with the disadvantages that the parameters somehow have
to be constrained to be legal and the requirement for smart optimization techniques to ensure convergence.

6.1.4 Bayesian Parameter Estimation

In Bayesian estimation, the parameters are assumed to be random variables as well. Hence, by putting a prior
on the parameters, learning can be understood as a form of inference using Bayes rule:

P (Θ |x(1),x(2), . . . ,x(N)) =
P (x(1),x(2), . . . ,x(N) |Θ)P (Θ)

P (x(1),x(2), . . . ,x(N))
.

Assume (for now) that the model only has a single binomial random variable X with the parameter θ. Then,
by the i.i.d. assumption, all data points are independent from each other and they can be represented easily
by the following Bayesian network:

θ

x(3)x(2)x(1) · · · x(N)
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This network has the interesting property that P (x(i) | θ) = θ. Hence, predicting θ directly corresponds to
inference in this network.

As the true parameter is unknown, one idea is to integrate it out and compute the marginal data likelihood.
With the prior P (θ) = 1 for 0 < θ < 1 and the likelihood P (x1, x2, . . . , xn | θ) = θk(1−θ)n−k with k =

∑n
i=1Xi

and binary variables, the marginal likelihood is

P (x1, x2, . . . , xn) =

∫ 1

0
P (x1, x2, . . . , xn | θ)P (θ) dθ =

1

n+ 1

(
n

k

)−1
and, by Bayes rule, the posterior is

P (θ |x1, x2, . . . , xn) = (n+ 1)

(
n

k

)
θk(1− θ)n−k.

To now perform prediction, it can be considered to compute the probability of the variable xn+1, treating the
realizations as a chain. Observing that P (xn+1 | θ, x1, x2, . . . , xn) = P (xn+1 | θ) simplifies the integrals down
to

P (xn+1 |x1, x2, . . . , xn) =
k + 1

n+ 2
.

All of these calculations are possible as the chosen prior was conjugate to the likelihood. That is, the posterior
lies in the same distribution family as the prior.
Similarly to the above Bayesian network for a single parameter and random variable, Bayesian networks

can be constructed for multiple parameters and variables to perform learning as inference. The core idea is
that the separate data points are independent given the parameters, hence making inference tractable. The
other observation is that the estimation only relies on sufficient statistics (these are the count for multinomials,
for example).

6.1.5 Summary

Two approaches for parameter estimation with a fixed structure have been considered: maximum likelihood
and Bayesian estimation. While both are asymptotically equivalent and consistent (i.e., they converge to the
same “true” value), Bayesian estimation provides smoother result regularized by the prior. And if the prior is
chosen to be close to the optimal value, it converges faster.

6.2 Structure Learning / Model Selection

In the previous section, it was assumed that the structure of the Bayesian network (the random variables and
dependencies between them) where given. However, this is often not the case. In essence, the goal is to find,
given a P , a G which is an I-map of P . To do some, a notion of minimal I-maps and equivalence of I-maps is
necessary.

6.2.1 Minimal I-Maps and Perfect Maps (P-Maps)

A straightforward approach for defining an I-map to be minimal is to call an I-map minimal if it is as simple as
possible, i.e., the removal of an edge would make the graph not be an I-map anymore. However, this has the
major caveat that even graphs with lots of edges might be “minimal” in this sense although other configuration
have less edges. Consider, for instance, the following networks (left is the true model):

35



F

S

A

H

F

S

A

H

Although both models entail the independencies required to be an I-map, the left model is obviously simpler
than the right. Hence, the above definition of a minimal I-map (removing an edge results in the graph not
being an I-map anymore) is insufficient to capture simplicity and minimalism.

6.2.2 Perfect Maps (P-Maps) and I-Equivalence

An alternative approach is to not just try to find an I-map but to find a perfect map (P-map) with I(G) = I(P ).
This eliminates the problem of defining minimalism and simplicity. Instead, a notion of equivalence between
maps must be created. Straightforwardly, two models G1 and G2 are said to be I-equivalent if I(G1) = I(G2).
This definition leads to a theorem for I-equivalence of two Bayesian networks:

Theorem Two Bayesian networks G1 and G2 are I-equivalent if and only if they have the same skeleton
and same immoralities (v-structures with disconnected parents). But why would one even struggle to find
accurate structures? This stems from two factors: first, both networks with too many and networks with
too few edges induce wrong assumptions on the structure. Second, networks with too few connections (and
thus too many independencies) cannot be compensated by parameter estimation (as the relevant parameters
simply do not exist); similarly, networks with too many edges have too many parameters where the number
grows super-exponentially with the number of variables, making learning ambiguous and slow.

6.2.3 Obtaining a P-Map

To obtain a P-map, in a first step the basic independencies of P (skeleton and immoralities) have to be
extracted. This yields the equivalence class the Bayesian network has to live in. In a second step, every BN
structure has to be obtained that lies in this equivalence class.
Obtaining the skeleton, i.e., figuring out whether there is an edge between two random variables, means

to check whether the local Markov assumption holds for a pair of random variables X, Y . That is, if there
exists a U ⊆ X \ {X,Y } with |U| such that X ⊥ Y | U , then there is no edge between X and Y . Here, d is the
maximal number of parents which is a hyper-parameter reducing the search space.

In the second step, the immoralities have to be identified, i.e., for a triple X − Y − Z without X − Z, when
should it be an immorality X → Y ← Z? Essentially, this is the case if X ⊥ Y .

Both steps are summarized in algorithm 5. Note that all of this assumes that there is some way to determine
whether X ⊥ Y | U holds. There are numerous approaches to this which are discussed in subsubsection 6.2.4.

From this process, a partially directed acyclic graph emerges as the identification of immoralities already
prescribes some directions. Take, for instance, the following graph:

X Z Y

W

T U
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Here the only immorality X → Z ← Y was identified. However, from this it follows that the edge Z −W
must have the direction Z → W as the reverse would create even more immoralities (X → Z ← W and
Y → Z ← W ) which have not been observed. There exist polynomial algorithms to identify these forced
directions.

Algorithm 5: Bayesian Network P-Map Identification
Input: Random variables X = X1, X2, . . . , Xn, max. number of parents d < n
Output: Equivalence class for P-maps
// Skeleton Identification:

1 foreach X,Y ∈ X do
2 e← t ;
3 foreach U ⊆ X \ {X,Y } with |U| ≤ d do
4 if X ⊥ Y | U then
5 e← f ;
6 break ;

7 if e = t then
8 Add edge between X and Y . ;

// Immorality Identification:
9 foreach Triple X − Y − Z in the skeleton do

10 i← t ;
11 foreach U ⊆ X \ {X,Y } with Z ∈ U do
12 if X ⊥ Y |U then
13 i← f ;
14 break ;

15 if i = t then
16 Add immorality X → Y ← Z. ;

6.2.4 Learning Approaches

To learn the structure of a network, two distinctive approaches exist: constraint- and score-based learning.
These will be presented in the following two sections.

Constraint-Based

Constraint-based learning is based on algorithm 5 and tackles the identification of the independenciesX ⊥ Y | U .
Its approach is to use statistical tests with the null hypothesis that the independence holds. One such test is
the χ2-independency-test. A more direct measure is the mutual information

Î(X;Y | U) =
marg.∑
X,Y

P̂ (X,Y | U) log P̂ (X,Y | U)
P̂ (X) P̂ (Y | U)

where ·̂ denotes that the quantities are approximations (i.e., P̂ is an estimated probability based on counting
the examples).
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Score-Based

Score-based learning depends on a score function to assess a model’s accuracy and searches for a structure
with maximum score. A straightforward approach is to use the (log-)likelihood

logP (x(1),x(2), . . . ,x(N) |G) = N

n∑
i=1

(
Î
(
Xi; PaG(Xi)

)
− Ĥ(Xi)

)
where Î and Ĥ are the approximate mutual information and entropy, respectively. Note that the data is used
in the computation of the mutual information and entropy as the probabilities are based on counting the
samples.
While this approach is rather simple, it has the disadvantage that adding edges always increases the log-

likelihood. Hence, a fully connected network is optimal w.r.t. to the log-likelihood and it overfits badly. A
practical approach is to just pick a model that scores well and use that for inferring the structure, but this
yields the problem that for a small sample size, lots of models perform well but the answers of these models is
often useless.

An alternative approach is to use a Bayesian score by placing a prior on the parameters. While this methods
yields lots of integrals that are hard to evaluate, placing a Dirichlet prior on the parameters yields a good and
simple-to-compute approximation, the Bayesian information criterion (BIC). For a Dirichlet prior and a large
dataset (i.e., N lg 0), the integral

P (x(1),x(2), . . . ,x(N) |G) =
∫
P (P (x(1),x(2), . . . ,x(N) |G),Θ)P (Θ |G) dΘ

for the marginal likelihood can be approximated as

logP (x(1),x(2), . . . ,x(N) |G) = logP (x(1),x(2), . . . ,x(N) |G,Θ)− logM

2
dimG+O(1)

= N
n∑

i=1

(
Î
(
Xi; PaG(Xi)

)
− Ĥ(Xi)

)
− logN

2
dimG+O(1),

where dimG is the number of parameters. The the first term is simply the data log-likelihood and assesses the
fit to the data while the second term penalizes model complexity (quantified by the number of parameters)
and avoid fitting noise. As the amount of data N grows, the former term becomes prevalent and hence the
BIC score is consistent (i.e., converges to the “true” data and overrides the Dirichlet prior).

6.2.5 Structure Search as Optimization

Using a scoring function (subsubsection 6.2.4), structure learning can be framed as an optimization problem
trying to maximize a score. For this, the optimization algorithm needs the following ingredients:

• Training data

• Scoring function (LL, MDL, BIC, . . . )

• Set of possible structures
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Learning Trees (Complete Data)

If it is known that a tree structure has to be selected and the data is complete, the optimal model can found
with time complexity O(n2 log n) by finding the spanning tree with the maximum score. However, if some
variables are hidden or incomplete, the problem becomes hard again (and can be approximately solved using
EM).

Heuristic (Local) Search

Most of the time, heuristics are used for finding a reasonable model. They leverage a set of application simple
actions (e.g., add/remove/flip and edge, . . . ) and traverse the search space looking for high-scoring models.
Some search techniques are greedy hill-climbing, best first search, simulated annealing, etc.

One of the most used approaches is local search that starts with some network (e.g., empty, best tree, random,
. . . ) and at each iteration evaluates all possible changes based on the set of applicable cations and chooses the
one that improves the current score the most. The algorithm terminates once no modification can improve
the score anymore and a local maximum was found. After a local change, only parts that have changed have
to be re-evaluated if the data is complete, but for incomplete data, everything has to be re-calculated after
re-estimating the parameters.

While this approach is simple, it also exhibits some major drawbacks: first, it is prone to get stuck in local
maxima. Second, it can get stuck on plateaus where no change makes a difference. As usual, standard
heuristics can be used for circumvent some of these issues (e.g., random restarts, TABU search, simulated
annealing, . . . ).

Structural EM

In practice, applying local search with incomplete data using EM is costly as every evaluation of the scoring
function first requires to re-fit the parameters and therefore invoke EM. This costs time as it also has to be run
on poor candidates. . . in practice, only a few candidates are evaluated in depth. This introduces structural EM,
an EM algorithm specially designed for this problem.

Structural EM (SEM) is based on the idea that instead of optimizing the real score, optimize an alternative
surrogate score that is decomposable. This alternative score must have that property that maximizing it
improves the real score, too. The E-step works as usual. But in the M-step, the maximization is done in a
combined parameter-structure-space, leading to a parametric and structural M-step, one of which is executed
at time.
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7 Dynamic Bayesian Networks

So far, only static Bayesian networks have been considered that cannot evolve. But the world around us is
rather dynamic and changes with time, so incorporating this into the theory of probabilistic graphical models
would be good. This chapter covers some basic topics with networks changing dynamically, highlighting the
most common one, the hidden Markov model that has lots of nice properties and theoretical development that
can all be leveraged when formulating a problem in this framework.

A hidden Markov model (HMM) is a graphical model with T states St, t = 1, 2, . . . , T and as many observations
Ot, t = 1, 2, . . . , T ; see Figure 7.1. The terminology of states and observations stems from its applications
in robotics and similar fields where the observations are usually sensor data and the states are the actual,
non-observable/latent, physical states (e.g., the acceleration). According to the Bayesian network, the HMM
factors as

P (S1, S2, . . . , ST , O1, O2, . . . , OT ) = P (S1)

T−1∏
t=1

P (St+1 |St)
T∏
t=1

P (Ot |St) = πS1

T−1∏
t=1

aStSt+1

T∏
t=1

bStOt

where πS1
:= P (S1), aStSt+1

:= P (St+1 |St), bStOt
:= P (Ot |St) are called the initial, transition, and observation

distributions, respectively. By the local Markov assumption, the “future is independent of the past given the
present”, i.e., the next state only depends on the current state and not on the state beforehand1.

7.1 Inference

Performing inference in an HMM has three flavors:
• Decoding: Compute the probability of an observation sequence.
• Best State Sequence: Given observations, compute the most likely (hidden) states.
• Parameter Estimation: Given observations and a set of possible models, which fits the best?

These three flavors are covered in the upcoming sections. Let, for all of the following, S and O be the set of all
state and observation variables for brevity. Also, let Θ be the parameters of the network.
1Note that there are other variants of HMMs, called k-th order HMMs, that can watch up to k steps into the past. So the HMM
covered here has k = 1. However, any k-th order HMM can be reduced to a first-order HMM, so the theory stays the same (cf.
higher-order ordinary differential equations).

S1 S2 · · · ST

O1 O2 OT

Figure 7.1: Hidden Markov model with states St and observations Ot.
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7.1.1 Decoding

Decoding is concerned with computing the following probabilities:

P (O |S,Θ) =
T∏
t=1

bt P (S |Θ) = π
T−1∏
t=1

at

P (O,S |Θ) = P (O |S,Θ)P (S |Θ) P (O |Θ) =

marg.∑
S

P (O,S |Θ)

While of of these are trivial expressions, computing P (O |Θ) has complexityO(NT ·2T ) due to the exponential
number of entries in the CPT!
However, it is possible to leverage dynamic programming and defining recursive relations to compute

P (O |Θ) efficiently:
αℓ(t) := P (O1, O2, . . . , Ot, St = ℓ |Θ) βs(t) := P (Ot+1, Ot+2, . . . , OT |St = s,Θ)

αℓ(1) = πℓ bℓO1 βs(T ) = 1

αℓ(t+ 1) =
∑
s

αs(t) asℓ bℓOt+1 βs(t) =
∑
ℓ

asℓ bℓOt+1 βℓ(t+ 1)

The left column is a forward pass for computing αℓ(T ) = P (O1, O2, . . . , OT , ST = ℓ |Θ) and the right column
is a backward pass for computing βs(1) = P (O2, O3, . . . , OT |S1 = s |Θ). These quantities can then be used
in three different fashions for computing P (O |Θ):

P (O |Θ) =
∑
s

αs(T ) =
∑
s

πs bsO1 βs(1) =
∑
s

αs(t)βs(t)

Where the latter is true for all t = 1, 2, . . . , T .

Proof of Forward Pass Showing that the recursive relation for αℓ(t) is straightforward by invoking the chain
rule and exploiting the HMM’s independencies multiple times (omitting the explicit dependence on Θ for
brevity):

αℓ(t+ 1) = P (O1, O2, . . . , Ot, Ot+1, St+1 = ℓ)

= P (O1, O2, . . . , Ot, Ot+1 |St+1 = ℓ)P (St+1 = ℓ)

= P (O1, O2, . . . , Ot |St+1 = ℓ)P (Ot+1 |St+1 = ℓ)P (St+1 = ℓ)

= P (O1, O2, . . . , Ot, St+1 = ℓ)P (Ot+1 |St+1 = ℓ)

=
∑
s

P (O1, O2, . . . , Ot, St = s, St+1 = ℓ)P (Ot+1 |St+1 = ℓ)

=
∑
s

P (O1, O2, . . . , Ot, St+1 = ℓ |St = s)P (St = s)P (Ot+1 |St+1 = ℓ)

=
∑
s

P (O1, O2, . . . , Ot, |St = s)P (St+1 = ℓ |St = s)P (St = s)P (Ot+1 |St+1 = ℓ)

=
∑
s

P (O1, O2, . . . , Ot, St = s)P (St+1 = ℓ |St = s)P (Ot+1 |St+1 = ℓ)

=
∑
s

αs(t) asℓ bℓOt+1

By marginalizing out S1 of αS1(T ), this is equivalent to P (O |Θ). □
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Proof of Backward Pass Analogous to the forward pass: invoke the chain rule multiple times and exploit
the HMM’s independencies. Showing the computation for P (O |Θ) is also straightforward:∑

s

πs bsO1 βs(1) =
∑
s

P (S1 = s)P (O1 |S1 = s)P (O2, O3, . . . , OT |S1 = s)

=
∑
s

P (S1 = s)P (O1, O2, . . . , OT |S1 = s)

=
∑
s

P (O1, O2, . . . , OT , S1 = s)

= P (O1, O2, . . . , OT )

□

Proof of Combined Pass Showing the combined pass formulation is just plugging in of distributions and
leveraging independencies, too:∑

s

αs(t)βs(t) =
∑
s

P (O1, O2, . . . , Ot, St = s)P (Ot+1, Ot+2, . . . , OT |St = s)

=
∑
s

P (O1, O2, . . . , Ot |St = s)P (Ot+1, Ot+2, . . . , OT |St = s)P (St = s)

=
∑
s

P (O1, O2, . . . , OT |St = s)P (St = s)

=
∑
s

P (O1, O2, . . . , OT , St = s)

= P (O1, O2, . . . , OT )

□

7.1.2 Best State Sequence

To find the most probable/best state sequence for a given observation sequence, two basic approaches exist:
first, to get the states that are most likely individually; second, get the most likely sequence.
The former is relatively straightforward using the α’s and β’s defined before:

γs(t) = P (St = s |O,Θ) =
P (St = s,O |Θ)

P (O |Θ)
=

αs(t)βs(t)∑
s αs(t)βs(t)

Subsequently, this quantity can be maximized, s∗t = argmaxs γs(t).
To find the state sequence X∗ = argmaxX P (X |O,Θ), the Viterbi algorithm has been developed. Let

δℓ(t) = max
s1,s2,...,st−1

P (s1, s2, . . . , st−1, O1, O2, . . . , Ot−1, St = ℓ)

be the maximum probability (state sequence) for given observations landing in state ℓ at time t. Like before
for decoding, this quantity can be computed recursively,

δℓ(t+ 1) = max
s

δs(t) asℓ bℓOt+1 ,

with δℓ(1) = πℓ bℓO1 to kick off the iteration. The argument states are stored in ψℓ,
ψℓ(t+ 1) = argmax

s
δs(t) asℓ bℓOt+1 .
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After iterating, the most likely state sequence can be computed using the following:
s∗T = argmax

s
δs(T ) s∗t = ψs(t+ 1) P (s∗) = argmax

s
δs(T )

This allows computing the most likely state sequence efficiently.

7.1.3 Parameter Estimation (Using EM)

Parameter estimation in a HMM is concerned with finding the parameters Θ given an observation sequence.
This is essentially done using an EM algorithm like it was introduced before in subsection 6.1.2, but using the
probabilities α and β. The estimated π̂, â, and b̂ are then given as

π̂S1 = γS1(1) âStSt+1 =

∑T−1
t=1 pt(St, St+1)∑T−1

t=1 γSt(t)
b̂StOt =

∑T
t=1;ot=Ot

γSt(t)∑T
t=1 γSt(t)

where pt(St, St+1) and γSt(t) are the probability of traversing from a state St to a state St+1 and the probability
of being in a state St, respectively:

pt(St, St+1) =
αSt(t) aStSt+1 bSt+1Ot+1 βSt+1(t+ 1)∑

s αs(t)βs(t)
γSt(t) =

∑
s

pt(St, s)

Note that the data is incorporated in computing the p’s and γ’s (this is effectively the E-step). By iterating
these two sets of equations, the algorithm will converge (although possibly to a local maximum). This is
known as the Baum-Welch algorithm.

7.2 State Estimation (Kalman Filter)

So far, only discrete states that can be enumerated have been considered. In lots of applications such as
robotics and other dynamical systems, however, the states are continuous. Also, an agent is able to perform
actions u in the environment but cannot directly observe the states x but only observations z that somehow
depend on x. State estimation is concerned with recovering the states x. In this section first the general
framework of a Bayes filter is discussed and subsequently a special case, the Kalman filter is covered. The
Kalman filter is an approach of applying the built theory to linear Gaussian dynamical systems (LGDS’s) where
the local distributions are Gaussian and the mean propagation is linear.

7.2.1 Bayes Filter

A Bayes filter used a stream of sensor-action pairs (ut, zt+1), a sensor model P (zt |xt), an action model
P (xt+1 |ut,xt), and a prior on the system stateP (x). It seeks for the beliefBel(xt) = P (xt) |u1, z2,u2, z3, . . . ,ut−1, zt
on the system state given all prior actions and observations with the assumption of a hidden Markov model on
the states and observations2. After some massaging of the probability distributions, the belief can be expressed
as

Bel(xt) ∝ P (zt |xt)

∫
P (xt |xt−1,ut−1)Bel(xt−1) dxt−1 .

For some systems like LGDS’s, this integral can be solved in closed form, leading to the Kalman filter discussed
in the next section. Another filtering systems used often is a particle filter which is based on using a Monte
Carlo approximate of the integral.
2Some underlying assumptions are that the world does not change, i.e., the distributions are time-invariant, the noise is independent,
the model is perfect, and that no approximation errors occur.

43



7.2.2 Discrete-Time Kalman Filter

The discrete-time Kalman filter tackles dynamical systems of the form

x1 ∼ N (µ0,Σ0)

xt+1 ∼ N
(
Atxt +Btut, Rt

)
yt ∼ N

(
Ctxt, Qt

)
where x1:T , y1:T , and u1:T−1 are the states, observations, and actions, respectively. The matrices At, Bt, Ct,
Rt, and Qt are the dynamics, control, observation, state covariance, and observation covariance matrices,
respectively. µ0 and Σ0 are the mean and covariance of the initial state. All of these parameters are assumed
to be known for state estimation.
As the integrals of the Bayesian filter can be solved in closed form for LGDS’s, the Kalman filter equations

can also be stated in closed form. The state estimation consists of two steps: prediction and correction. In the
prediction step, the state is predicted from the prior knowledge:

µ̄t = Atµt−1 +Btut Σ̄t = Atσt−1A
⊤
t +Rt

In the correction step, a new observation yt is incorporated to correct the previous prediction:

µt = µ̄t +Kt(yt −Ctµ̄t) Σt = (I −KtCt)Σ̄t

Here, Kt = Σ̄tC
⊤
t

(
CtΣ̄tC

⊤
t +Qt

)−1 is the Kalman gain. The estimations µ1:T are the expected states with
covariance Σ1:T given the observations y1:T .

7.3 General Dynamic Bayesian Networks

So far, only HMMs and LGDS’s, a special kind of HMM, were considered. For general dynamical Bayesian
network, the theory is not that evolved. The basic ideas are based on unrolling the network for a specific
number of time steps an then performing various inference tasks in it:

• Filtering: Computes the expected states given the observations until t.

• Prediction: Computes the expected next state.

• Smoothing: Computes the expected states given all observations until T .

• MLE: Computes the most likely state sequence.

However, the naive method of unrolling the BN has some major drawbacks. Foremost, the inference cost
increases with t. One approach to solving this is to roll up the network again and using variable elimination
to sum out the previous states.
In general, exact inference is intractable and approximate methods need to be used (e.g., factored belief

states).
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8 Approximate Inference

As known from chapter 4, exact inference is general NP-hard and intractable even for simple cases in the
setting of dynamic BNs. Hence, it is desirable to get tractable approximate inference.

8.1 Message Passing in Factor Graphs

A factor graph is a representation of the structure of a distribution where random variables are connected
via factor nodes that represent the factors of the distribution. The connection to Markov networks (and
subsequently Bayesian networks) is best explained with an example: consider the Markov network

X1

X2 X3

X4 X5 X6

which factorizes as

P (X1, X2, X3, X4, X5, X6) = P (X1, X2, X3)︸ ︷︷ ︸
f1

P (X2, X4)︸ ︷︷ ︸
f2

P (X2, X3, X5)︸ ︷︷ ︸
f3

P (X3, X6)︸ ︷︷ ︸
f4

.

The corresponding factor graph then is:

f1X1

X2

X3

f2X4 f3 X5

f4 X6

Note that this factor graph has a cycle! For most parts of this section, it is required that the factor graph is
acyclic.

A rather simple algorithm for performing inference in factor graphs is sum-product belief propagation. Similar
to inference in junction tree (subsection 5.4.1), it consists of sending message between the graph’s nodes. All
nodes hold a belief b (with bi for the i-th variable node and bα for the α-th factor node) that is used to compute
the respective marginals (over the node’s variable’s realization xi or the factor’s realization set of variables xα)
by normalization. Both variable and factor nodes send messages µi→α and µα→i to their neighbors. First, the
messages are sent from the leaves to the root and subsequently the messages are propagated back from the
root to the leaves (cf. junction tree inference).
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The messages are constructed as follows (from variables to factors on the top, and vice versa on the bottom;
N (·) are the neighbors of the node/factor):

µi→α(xi) =
∏

α∈N (i)\{α}

µα→i(xi)

µα→i(xi) =
∑

xα;xα,i =xi

fα(xα)
∏

j ∈N (α)\{i}

µj→α(xα,i)

Subsequently (after propagating the messages), the beliefs can be computed as follows:

bi(xi) =
∏

α∈N (i)

µα→i(xi) bα(xα) = fα(xα)
∏

i∈N (α)

µi→α(xα,i)

The complete pseudocode is given in algorithm 6.
The sum-product algorithm can be seen as an instance of dynamic programming combined with variable

elimination: the big problem of inference is broken down into small sub-problems characterized by the
different parts of the graph. Additionally, the sum-product algorithm can also be used to find most probable
explanations by replacing the sums with max’s.

Algorithm 6: Sum-Product Algorithm
Input: acyclic factor graph
Output: exact marginals for each variable and factor variables
// Initialize messages to a uniform distribution:

1 µi→α(xi)← 1
2 µα→i(xi)← 1
3 Choose a root node.
// Send messages from leaves to root:

4 µi→α(xi)←
∏

α∈N (i)\{α} µα→i(xi)

5 µα→i(xi)←
∑

xα;xα,i =xi
fα(xα)

∏
j ∈N (α)\{i} µj→α(xα,i)

// Compute beliefs:
6 bi(xi)←

∏
α∈N (i) µα→i(xi)

7 bα(xα)← fα(xα)
∏

i∈N (α) µi→α(xα,i)

// Normalize belifs and return the marginals:
8 Pi(Xi = xi) ∝ bi(xi)
9 Pα(Xα = xα) ∝ bα(xα)

8.1.1 Loopy Belief Propagation

So far, only acyclic factor graphs have been considered. However, most factor graphs have cycles (loops).
Hence, the messages are no longer independent and could travel in circles! And due to these cycles, dynamic
programming cannot help anymore and the problem of computing the exact marginals is #P-complete. In
turns out, though, that just ignoring this fact and letting run message passing until convergence works fine in
most cases.

However, in some cases, the messages might loop around and drive the beliefs to deterministic distributions
as the beliefs are increased in every turn (as the messages are treated to come from independent parts of the
graph). But usually, cycles are long or include weak correlations such that the influence is weak.
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Some approaches for dealing with loops is to just stop after a certain number of iterations or stop when the
beliefs do not change anymore which can also be accelerated using simulated annealing or similar techniques.
Usually, if the algorithm converges, it produces a good approximation. Some exemplary implementations are
Turbo Codes and Lifted Inference.

8.2 Sampling

Another method of approximate inference is sampling. A sample is an instantiation x of random variables X
generated from a distribution P (X). Also, it is desired to also incorporate evidence E = e to sample from
the distribution P (X |E = e). To compute the expected value of a random variable, multiple samples can
be generated and averaged which (according to the strong law of large numbers) will converge to the real
expectation as the number of samples increases. Similarly, the probability of an outcome can be estimated by
counting1.

For a binary random variable X ∈ {0, 1} with P (X = 0) = θ, a sample can be generated straightforwardly
by x = 1[ϵ > θ] where ϵ ∼ U(0, 1) is sampled from a uniform continuous distribution. Random number
generators for this range are assumed to exist from now on, and they do in most programming languages
(usually as pseudo random number generators). For a Bayesian network with a huge number of random
variables and complicated distributions, sampling is not that simple. The following sections will cover some
methods for sampling from these Bayesian networks.

8.2.1 Forward Sampling

Forward sampling is a naive straightforward methods that works well when no evidence has to be considered.
It starts from a node with no parents, generates a sample, and propagates this sample down the Bayesian
network, instantiating each CPT into a simple distribution. With evidence, some samples have to be rejected
as soon as the evidence is violated. The pseudocode is given in algorithm 7.

While forward sampling has the advantages to be really simple and to produce true independent samples,
incorporating the evidence in this fashion has some major drawbacks: if the probability P (E = e) of the
evidence is low, most of the samples will be rejected. Hence, lots of useless samples will be generated, making
the whole procedure extremely slow.

Algorithm 7: Forward Sampling
Input: Bayesian network with variables X1, X2, . . . , Xn, number of samples T , evidence E = e
Output: Set of samples x(1:T )

1 for t = 1, 2, . . . , T do
// Initialize empty sample:

2 x(t) ← Empty
3 foreach Xi in a topological ordering do
4 x

(t)
i ← Sample from P

(
Xi | Pa(Xi) = x(t)

)
5 if Xi ∈ E and x(t)i ̸= ei then
6 Reject sample and start over (go to line 2).

1Note that this is only really applicable for discrete random variables as a specific value of a continuous variable has measure zero.

47



8.2.2 Gibbs Sampling

Another more efficient method for sampling with evidence is Gibbs sampling, a Markov chain Monte Carlo
(MCMC) method. Compared to forward sampling, the samples are, however, not independent anymore and
form a Markov chain (hence the name MCMC). The samples are taken from a surrogate distribution P ′ that
converges to the true distribution P over time (with guaranteed convergence if all probabilities are positive).
The basic idea is to sample only one variable at a time, keeping all other variables fixed,

x
(t+1)
i ∼ P (· |Xi+1:ñ = x

(t)
i+1:ñ,X1:i−1 = x

(t)
1:i−1,E = e), (8.1)

where the evidence variables E are supposed to be the last (n− ñ) random variable such that X = X1:ñ ∪E.
By generating iterative many times, the distribution of the samples converges to P (X |E = e)! However, the
conditional (8.1) seems to be hard to compute. Recall from chapter 5 that a random variableXi is independent
of all other random variables given its Markov blanket

M(Xi) = Pa(Xi) ∪ Ch(Xi) ∪

( ⋃
Xj∈Ch(Xi)

Pa(Xj)

)
.

Hence, the distribution reduces to
P
(
Xi

∣∣X \ {Xi}
)
= P

(
Xi

∣∣ Pa(Xi)
) ∏
Xj∈Ch(Xi)

P
(
Xj

∣∣ Pa(Xj)
)
,

making it straightforward to compute when the Markov blanket is given as in (8.1). The pseudocode is given
in algorithm 8.

To answer probabilities queries P (Xi |E = e) using Gibbs sampling, it is either possible to use counting of
the samples (like in forward sampling), but it is also possible to leverage the surrogate probabilities directly:

P̂ (Xi |E = e) =
1

T

T∑
t=1

P (Xi |Xi+1:ñ = x
(t)
i+1:ñ,X1:i−1 = x

(t)
1:i−1,E = e)

This could yield a more accurate approximate of the probability.

Algorithm 8: Gibbs Sampling
Input: Bayesian network with variables X1, X2, . . . , Xn, number of samples T , evidence E = e
Output: Set of samples x(1:T )

// Initialize zeroth sample somehow, e.g., uniformly:
1 x(0) ← Random
2 for t = 1, 2, . . . , T do
3 for t = 1, 2, . . . , n do

// Generate sample levaraging the Markov blanketM(Xi) to compute the CPT:
4 x

(t+1)
i ← Sample from P (· |Xi+1:ñ = x

(t)
i+1:ñ,X1:i−1 = x

(t)
1:i−1,E = e)

Burn-In

One problem of Gibbs sampling is that the first samples do not follow P as the initialization is random. This is
known as the burn-in phase and can be solved by throwing away the first K samples. However, K cannot be
determined in a principled fashion and is set by intuition. Alternative approaches are to draw the first samples
from an approximate P (X |E = e) found by loopy belief propagation (subsection 8.1.1), for example.
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Convergence: Irreducibility, Aperiodicity, and Ergodicity

The convergence of Gibbs sampling to a stationary distribution π∗ is guaranteed under three conditions: the
sample chain must be irreducible, aperiodic, and ergodic. Let pij = P (x(i) → x(j)) be the transition kernel
describing the probability of transition from x(i) to x(j) in the Markov chain. Then irreducibility, aperiodicity,
and ergodicity are defined as follows:

• Irreducibility: A Markov chain is irreducible if every state can be reached from every other state (not
necessarily in one step), i.e., ∀i, j : ∃k : p

(k)
ij where k is the number of steps.

• Aperiodicity: Let d(i) := gcd{k > 0 : it is possible to go from state i to state i in ksteps}, where gcd is
the greatest common divisor. Then a Markov chain is aperiodic if ∀i : d(i) = 1, i.e., it is only possible to
go back to the same state irregularly.

• Ergodicity: Ergodic states i, j are recurrent and aperiodic. States i, j are recurrent if the chain returns
to it with probability 1, i.e.,∑n p

(n)
ij →∞. An extra condition is that the expected recurrence time is

finite which is trivial in finite chains.

The required ergodicity requires ∀i, j : pij > 0, i.e., it is possible to reach every state from every other state in
one step with some probability. This generally holds in networks where all probabilities are positive. Consider
a network containing (among others) two random variables X and Y that are correlated such that X = 0 iff
Y = 0. Then once X = 0 or Y = 0 is reached, Gibbs sampling is force to set the other to zero, too. Hence, it
will never be possible to change their values and parts of the sampling space remain uncovered.

However, it can take quite some time as the samples are dependent (autocorrelation) and variance is
extremely high in high-dimensional settings. Hence, speeding up convergence has to tackle these problems:
reducing the dependence between samples and reducing the variance. This will be covered in the upcoming
two sections.

Reducing Autocorrelation

To reduce autocorrelation between samples, two major techniques have been developed: skipping samples and
randomizing the variable order. While both of these are straightforward to implement and quite intuitive, they
have different pros and cons. Of course, skipping samples is inefficient and samples are wasted. Additionally,
it increases the variance. Randomizing the variable order, on the other hand, can even decrease the variance!
However, it is a tad harder to implement.

Reducing Variance

Reducing the variance can again be tackled by two major techniques: blocking and Rao-Blackwellization. The
former bundles highly correlated variables into blocks and samples them in one step, greatly reducing the
variance and convergence speed. However, it comes at the cost that the domain that the blocks’ domains grow
exponentially. . .Raw-Blackwellization, on the other hand, simply reduces the number of variables to sample
and samples only a subset. Of course, this reduces the variance of the samples.

Multi-Chain Gibbs Sampling

In multi-chain Gibbs sampling,M chains of size K are generated which generate independent samples and
independent surrogate distributions P ′m. The probability P (Xi |E = e) can then be estimated as the average
P̄ (Xi |E = e) =

∑M
m=1 P

′
m/M .
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8.2.3 Likelihood Weighting

Likelihood weighting is a forward sampling-based method for sampling that builds on clamping the evidence
and weighting the samples by the evidence likelihood, working well for likely evidence. Pseudocode for
this process is given in algorithm 9. After generating the samples and weights, the posterior marginals
can be estimated. Like Gibbs sampling, likelihood weighting converges to the exact distribution. However,
convergence may be slow, too and the sample variance is high.

Algorithm 9: Likelihood Weighting Sampling
Input: Bayesian network with variables X1, X2, . . . , Xn, number of samples T , evidence E = e
Output: Set of samples x(1:T ) and weights w(1:T )

1 for t = 1, 2, . . . , T do
// Initialize empty sample and sample weight:

2 x(t) ← Empty

3 w(t) ← 1
4 foreach Xi in a topological ordering do
5 if Xi ∈ E and x(t)i ̸= ei then
6 x

(t)
i ← ei

7 w(t) ← w(t)P
(
Ei = ei | Pa(Xi) = x(t)

)
8 else
9 x

(t)
i ← Sample from P

(
Xi | Pa(Xi) = x(t)

)
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9 Tractable Probabilistic Models

In the current era of deep learning, the trend goes to stacking many layers in neural networks instead of
relying on shallow representations as they turn out to be much more powerful. But, opposed to PGMs, they
usually have no probabilistic semantics and learning requires extensive computation. Borrowing the idea of
deep representations, probabilistic circuits have been developed. These circuits are computational graphs for
joint distributions.
This chapter only touches upon tractable probabilistic models, circuits, and sum-product networks. For a

more thorough treatment, see section “Probabilistic Circuits” in chapter “Probabilistic Graphical Models” in
the summary of “Deep Learning: Architectures and Methods”1.

9.1 Sum-Product Networks

Sum-product networks (SPNs) are a special kind of probabilistic circuits (and arithmetic circuits (ACs)) whose
nodes consists of sum- and product-nodes. Additionally, the edges are weighted an the numbers flowing
across them are multiplied with the weight before feeding into the next node. A neat property of SPNs is that
inference is linear in network size!
To compute a full joint distribution, the inputs of the SPN are set to the respective values and then the

prescribed calculation is carried out. To compute a marginal, the variables to marginalize are all set to 1 and
then the prescribed calculation is carried out. To perform MAP, the sums are replaced by max’s in the forward
pass and by argmax’s in the backward pass to get the MPE.
Learning an SPN from data can be done in various fashions. The most simplistic one is to start with a

dense SPN and find the structure by learning the parameters (where zero weights indicate the absence of a
connection). However, this can cause vanishing gradients by the many multiplications. To directly learn the
(Tree-) SPN’s structure, testing for independencies similar to learning Bayesian networks (subsubsection 6.2.4)
is also a fruitful choice. These tests then identify product nodes while subsequently clustering algorithms like
k-means can be used for identifying the sum nodes (which can be understood as mixture models).
Another major advantage of SPNs is that they can be compiled into simple and library-free code that

can be executed on mobile devices. This is useful for real-time applications and similar. As they encode
multivariate distributions as polynomials of univariate distributions, they can also be used in symbolic methods
for inference.

1https://fabian.damken.net/summaries/cs/elective/iws/dlam/dlam-summary.pdf
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10 Deep Generative Models

While data is relatively cheap in the era of big data, the majority of the available data is unlabeled and
providing labels is time intensive, costly, requires expertise, etc. Hence, it is desirable to be able to learn
without supervision. (Deep) generative models are concerned with modeling the distribution of the data itself
instead of relying on a discriminator function. The found distribution can then also be used to generate new
data points (e.g., images). A major challenge in generative models is the curse of dimensionality: in high
dimensions, the data is usually sparse and an exponential amount of data is needed to fill the space.

In this chapter, multiple variants of deep generative models are covered, categorized into likelihood-based
and likelihood-free methods.

10.1 Likelihood-Based

Likelihood-based methods share the property that they learn by maximizing the (log-) likelihood of a model.

10.1.1 Autoregressive Generative Models

Autoregressive generative models are fully observed graphical models of the form

X1 X2 X3 X4 · · · Xn

factorizing as
P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi |X1, X2, . . . , Xi−1).

Of course, the CPTs for this model would again have exponentially many entries in the number of variables.
Later on, it will be introduced to parameterize the distributions with a neural network and approximating the
distribution.
To learn the parameters, it is possible to directly maximize the log-likelihood over the dataset D:

argmax
θ

logP (D | θ) = argmax
θ

∑
x∈D

logP (D | θ) = argmax
θ

∑
x∈D

n∑
i=1

logP (xi |x1, x2, . . . , xi−1).

The constraint on tractable factors allows exact computation of the likelihood! The conditionals can be
evaluated in parallel during training, making it faster. To sample from the model, forward sampling can be
used with the usual caveats (i.e., being slow with evidence).
As the number of entries in the CPTs of this model rise exponentially with the number of RVs, alternative

parametrizations are desired. Most of the time, neural networks are used:
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z

x

pθ(x | z) qϕ(z |x)

Figure 10.1: Graphical model of a variational auto-encoder with the latent states z, the decoder network
pθ(x | z) and the encoder network qϕ(z |x).

• Fully-Visible Sigmoid Belief Network (FVSBN)

• Neural Autoregressive Density Estimator (NADE): one hidden layer NN

• Masked Auto-Encoder Distribution Estimator (MADE): multilayer NN

Also other variants based on recurrent and convolutional neural networks have been proposed.

10.1.2 Variational Auto-Encoders

Variational autoencoders (VAEs) are models using latent variables and inference networks to infer the latent
distribution (see Figure 10.1 for the graphical model). Its goal is to maximize the marginal log-likelihood
log pθ(D) of the dataset. But this quantity is intractable! The key idea of VAEs is to approximate the posterior
pθ(z |x) with a simpler distribution qϕ(z |x) represented by a neural network. Inference is then cast as
optimization over θ and ϕ.
By massaging the quantity log pθ(x) a bit, one arrives at the following representation:

log pθ(x) = Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z |x)

]
︸ ︷︷ ︸

ELBO(x;θ,ϕ)

+DKL

(
qϕ(z |x)

∥∥ pθ(z |x)).
The last term (the KL-divergence) is still intractable, but as it is non-negative, it can be discarded, yielding the
evidence lower bound (ELBO), the left term. By optimizing the ELBO, the posterior approximate gets better
and better and finally, the model can be used to generate new data using forward sampling.
Note that the ELBO can be decomposed as

ELBO(x; θ, ϕ) = Eqϕ(z|x)
[
log pθ(x | z)

]
−DKL

(
qϕ(z |x)

∥∥ pθ(z)),
where the first term is the negative reconstruction error and the second is a penalty for diverging from the
prior pθ(z).

But while VAEs are quite successful, there are still various open research questions, e.g., better optimization
techniques, mor expressive approximations, alternative loss functions, . . .

10.1.3 Normalizing Flows

Normalizing flows leverage invertible neural networks to find a mapping fθ : Rn → Rn between a latent space
z and x that is invertible and deterministic such that x = fθ(z) and z = f−1θ (x). One example for such
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functions is a linear map. Then, change of variables

pX(x) = pZ(z)

(
det

∂f−1θ

∂X

∣∣∣∣
X=x

)

is used to define the distributions. In normalizing flows, multiple of these transformations are composed with
each other to build complex structures and distributions.
Learning is again done by maximizing the log-likelihood and exact likelihood-evaluation is possible by

design. For sampling, forward sampling can be applied straightforwardly. Also, the latent representation can
be inferred using the inverse transformation.

10.2 Likelihood-Free

Opposed to likelihood-based models, likelihood-free methods do not rely on the computation of a likelihood
for learning.

10.2.1 Generative Adversarial Networks

Generate adversarial networks (GANs) feature two neural distributions: a generator trying to generate fake
images and a discriminator trying to distinguish fake and real images. By training both in an alternating
minimax fashion, the generator learns to generate better and better images while the discriminator gets better
at differentiating them.

10.3 Applications in Scientific Discovery

Generative models have various applications, e.g., causal discovery and inference, model-based reinforcement
learning, scientific discovery. But there are still various open questions, e.g., evaluation metrics for sampling
and bias and fairness in generative models.
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