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1. Introduction

Most of the content in this summary, the ideas, the underlying structure and the image ideas are taken from
the lecture "Statistical Machine Learning" by Prof. Jan Peters. It is really just a summary of the contents of the
lecture.

1.1. Examples

1.2. Classification vs. Regression

1.3. Paradigm

1.4. Key Challenges

1.4.1. Generalization
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2. Fundamentals: Linear Algebra

2.1. Vectors

A vector is an ordered list of numbers that can be interpreted as an arrow in multidimensional spaces:

v ∈ Rn → v =

v1...
vn


Scalar Multiplication Multiplying a vector by a scalar is defined as multiplying each component by that
scalar (let v ∈ Rn, λ ∈ R):

λv = λ

v1...
vn

 =

λv1...
λvn


Per component:

(λv)i = λvi

Scalar multiplication is a linear operation.

Addition Adding two vectors is defined by adding the component of both vectors (thus, both vectors must
have the same size; let v, w ∈ Rn):

v +w =

v1 + w1
...

vn + wn


Per component:

(v + w)i = vi + wi

Vector addition is both associative and commutative.
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Vector Transpose The transposed version vT of a vector v ∈ Rn is a vector that was flipped around its main
axis (thus, the new vector is a row/column vector if the initial vector as a column/row vector):v1...

vn


T

=
[
v1 · · · vn

]
[
v1 · · · vn

]T
=

v1...
vn



Transposing a vector twice returns the initial vector

v =
(
vT
)T

Linear Combination A linear combination of multiple vectors v1, · · · ,vn ∈ Rm is the addition of the scaled
versions of them (scaled by scalars λ1, · · · , λn ∈ R):

u = λ1v1 + · · ·+ λnvn

If in a group of vectors v1, · · · ,vn ∈ Rm, no vector can be represented as a linear combination of the others,
they are called linearly independent.

Inner and Outer Product and Length The inner product of two vectors v,w ∈ Rn is the sum of the product
of the components and is denoted by a single dot (v ·w):

v ·w = vTw = (v1w1) + · · ·+ (vnwn)

Therefore, the inner product gives a scalar value. In Cartesian coordinates, this is also called the scalar product.
The length ∥v∥ of a vector v ∈ Rn is given as the euclidean norm:

∥v∥ =
(
v · v

) 1
2 =

√
v21 + · · ·+ v2n

The outer product of two vectors v,w ∈ Rn is defined analogue to the inner product, but with the transpose
switched and is denoted by a cross in a circle (v ⊗w):

v ⊗w = v ⊗wT

v1...
vn

⊗ [w1 · · · wn

]
=

v1w1 · · · v1wn
... . . . ...

vnw1 · · · vnwn


This is equivalent to matrix multiplication with two vectors and thus produces a matrix v ⊗w ∈ Rn×n.

Angles between Vectors The angle θ between two vectors v,w ∈ R is given by:

cos θ =
v ·w
∥v∥ ∥w∥

⇐⇒ θ = arccos
v ·w
∥v∥ ∥w∥
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w

v

x

Figure 2.1.: Illustration of Vector Projection

Projections of Vectors A projection of a vector v ∈ Rn onto a vector w ∈ Rn results in a scalar value x ∈ R
which equals the length of the adjacent w.r.t. to the angle between both vectors given that v is the hypotenuse
and the third line is orthogonal to w, see figure 2.1 for an illustration. Then this length is given as:

x = ∥v∥ cos θ =
v ·w
∥w∥

2.2. Matrices

A matrix is an ordered group of numbers that are ordered in two dimensions:

A ∈ Rn×m → A =

a11 · · · a1m
... . . . ...

an1 · · · anm


Scalar Multiplication Multiplying a matrix by a scalar is defined as multiplying each component by that
scalar (let A ∈ Rn×m, λ ∈ R):

λA = λ

a11 · · · a1m
... . . . ...

an1 · · · anm

 =

λa11 · · · λa1m
... . . . ...

λan1 · · · λanm


Per component:

(λA)ij = λaij

Scalar multiplication is a linear operation.

Addition Adding two matrices is defined by adding the component of both matrices (thus, both matrices
must have the same size; let A,B ∈ Rn×m):

A+B =

a11 + b11 · · · a1m + b1m
... . . . ...

an1 + bn1 · · · anm + bnm
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Per component:
(A+B)ij = aij + bij

Matrix addition is both associative and commutative.

Transpose The transposed version AT of a matrix A ∈ Rn×m is a matrix AT ∈ Rm×n that was flipped around
its main axis: a11 · · · a1m

... . . . ...
an1 · · · anm


T

=

a11 · · · an1
... . . . ...

a1m · · · anm



Transposing a matrix twice returns the initial matrix

A =
(
AT
)T

Matrix Multiplication The matrix multiplication of two matrices is only possible of the number of columns of
the first matrix equals the number of rows of the second matrix (i.e. A ∈ Rn×m, B ∈ Rm×o). The resulting
matrix then has the dimensions AB ∈ Rn×o. Matrix multiplication is defined as follows:

AB =

a11 · · · a1m
... . . . ...

an1 · · · anm

 ·
 b11 · · · b1o

... . . . ...
bm1 · · · bmo

 =

a11b11 + · · ·+ a1mbm1 · · · a11b1o + · · ·+ a1mbmo
... . . . ...

an1b11 + · · ·+ anmbm1 · · · an1b1o + · · ·+ anmbmo


Per component:

(AB)ij =
n∑

k=1

AikBkj

Matrix multiplication is only associative and distributive
w.r.t. matrix addition.

Inverse Let In ∈ Rn×n be the identity matrix with all ones on the main diagonal and the rest zeros. If the
dimension is clear, the n can be left out.
Using this definition, the inverse of a matrix A ∈ Rn×n is defined as matrix A−1 ∈ Rn×n that holds the

following equation:
AA−1 = A−1A = In

If such a matrix exists, the matrix A is called regular or nonsingular.
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Pseudoinverse If a matrix A ∈ Rn×m is not squared (i.e. n ̸= m), there exists no inverse matrix. Instead,
Pseudoinverse Matrices can be used to “invert” such a matrix. Left and right pseudoinverse are mutually
exclusive, meaning that the one can only exist if the other does not (whilst neither have to exist).
The left pseudoinverse does only exist of the matrix has full column rank and is defined as:

A# =
(
ATA

)−1
AT =⇒ A#A = Im

The right pseudoinverse does only exist if the matrix has full row rank and is defined as:

A# = JT
(
JJT

)−1
=⇒ AA# = In

Properties

Symmetricity A squared matrix A ∈ Rn×n is symmetric iff AT = A. This implies that:
• The inverse matrix A−1 is also symmetric.
• A can be decomposed into A = QDQT , where D is a diagonal matrix with all eigenvalues of A and Q is

a matrix with all columns as the eigenvectors of A.

Definite Quadratic Form Let A ∈ Rn×n be a squared matrix and let σ(A) be its spectral. Then the matrix
A is 

positive definite ∀λ ∈ σ : λ > 0 ⇐⇒ xTAx > 0

negative definite ∀λ ∈ σ : λ < 0 ⇐⇒ xTAx < 0

positive semi-definite ∀λ ∈ σ : λ ≥ 0 ⇐⇒ xTAx ≥ 0

positive semi-definite ∀λ ∈ σ : λ ≤ 0 ⇐⇒ xTAx ≤ 0

indefinite else
for all vectors x ∈ Rn.

Regularity/Nonsingularity All of the following are equivalent w.r.t. a matrix A ∈ Rn×n:
• The matrix is regular.
• The matrix is nonsingular (or not singular).
• There exists a matrix A−1 ∈ Rn×n with AA−1 = A−1A = In.
• The determinant of the matrix is nonzero: detA ̸= 0.
• The matrix has full row rank.
• The matrix has full column rank.

2.3. Operations and Linear Transformations

Change of Basis

Linear Transformations
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2.4. Eigenvalues and -vectors

Basis

Linear Transformations

2.5. Wrap-Up

• Vectors and matrices

• Operations on vectors and matrices

• Eigenvectors and -values

• Linear transformations
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3. Fundamentals: Statistics

For a much more detailed introduction into the basic concepts (e.g. random variables), please lookup the
summary of “Math 3: Stochastic and Statistics” (see https://www.dmken.com/cs), but notice that it is in
German.

3.1. Random Variables

A random variable is a number that is determined by chance, draw according to a probability distribution.

3.2. Distributions

A probability distribution describes the probability that a random variable will equal a certain value (or lie in
a certain range).

3.2.1. Uniform Distribution

All data/all values are equally likely within a bounded region R with size R.

p(x) =
1

R

The distribution is plotted in figure 3.1.

3.2.2. Discrete Distributions

The random variables take discrete values (can be infinite, but countably infinity) and their probabilities sum
up to 1: ∑

i

p(xi) = 1

A discrete distribution is described by a probability mass function which is a normalized histogram.

x

Figure 3.1.: Uniform Distribution
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Bernoulli Distribution

A Bernoulli random variable only takes on two values, e.g. 0 or 1.

Parameters

µ The probability that the variable equals 1.

Properties

x ∈ {0, 1}
p(x = 1 |µ) = µ

Bern(x |µ) = yx(1− µ)1−x

E(x) = µ

Var(x) = µ(1− µ)

Binomial Distribution

Binomial variables are a sequence of N Bernoulli variables.

Parameters

µ The probability that one variable equals 1.

N The number of trials/samples.

Properties

Bin(m |N,µ) =

(
N

m

)
µm(1− µ)N−m

E(m) = Nµ

Var(m) = Nµ(1− µ)

See figure 3.2 for a visualization of Bin(m | 10, 0.25).

Multinoulli Distribution

Multinoulli variables (also called categorical variables) are a generalization of Bernoulli variables where each
variable can have multiple (namely K) outputs. The random variables is a vector with one-hot-encoding.

Parameters

µ The entry µi defines the probability that the entry xi equals 1.
All entries must be µi ≥ 0 and∑K

k=1 µk = 1.

K The number of classes/outcomes.
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Figure 3.2.: Binomial Distribution Bin(m | 10, 0.25)

Properties

x = [0, 0, 1, 0, 0, 0]T

p(xi |µ) = µi

p(x |µ) =
K∏
k=1

µxk
k

E(x |µ) =
∑
x

p(x |µ)x = µT

Multinomial Distribution

Multinomial variables are a sequence of N Multinoulli variables.

Parameters

µ The entry µi defines the probability that, for one variable, the entry xi equals 1.
All entries must be µi ≥ 0 and∑K

k=1 µk = 1.
K The number of classes/outcomes.
N The number of trials/samples.

Properties

Mult(m1,m2, · · · ,mK |µ, N) =

(
N

m1,m2, · · · ,mK

) K∏
k=1

µmk
k

E(mk) = Nµk

Var(mk) = Nµk(1− µk)

Cov(mj ,mk) = −Nµjµk
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Figure 3.3.: Poisson Distribution p(m | 5)

Poisson Distribution

A Poisson distribution is a binomial distribution where the number of trials goes to infinity N →∞ and the
success of each trial goes to zero µ→ 0, s.t. Nµ = λ is constant.

Parameters

λ Defines the expectation value and the variance at once.

Properties

p(m |λ) = λm

m!
e−λ

E(m) = λ

Var(m) = λ

See figure 3.3 for a visualization of p(m | 5).

3.2.3. Continuous Distributions

The random variables take discrete values (infinite, can be uncountable) and their probability density function
integrates to 1:

+∞∫
−∞

p(x) dx = 1

A continuous distribution is described by a probability density function p(x).
The probability that a random variable x falls into the interval (a, b) is

P (a < x < b) =

b∫
a

p(x) dx
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Figure 3.4.: Standard Gaussian Distribution N (x | 0, 1)

Gaussian Distribution

Parameters

µ The expectation value.

σ2 The variance.

Properties

p(x) = N (x |µ, σ2) =
1√
2πσ2

exp

{
− 1

2σ2
(x− µ)2

}
E(x) = µ

Var(x) = σ2

A Gaussian distribution has more really useful properties:

• A Gaussian has soft tails, i.e. they fade away smoothly.

• Gaussians are often good models for data and provide analytical solutions.

See figure 3.4 for a visualization of N (x | 0, 1) (the standard Gaussian distribution).

3.2.4. Multivariate Gaussian Distribution

Gaussians can be applied to D-dimensional data x1, x2, · · · using multivariate Gaussian distributions.

Parameters

µ A vector µ ∈ RD of the expectation values for each dimension.
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Σ The covariance matrix containing the variance for each dimension on its main axis
and the covariances on the other spaces. It is symmetric and defined as:

Σ =


Var(x1) Cov(x1, x2) · · · Cov(x1, xD)

Cov(x2, x1) Var(x2) · · · Cov(x2, xD)
... ... . . . ...

Cov(xD, x1) Cov(xD, x2) · · · Var(xD)


Properties

p(x) = N (x |µ,Σ) = 1
√
2π

D√
detΣ

exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
E(x) = µ

Var(xi) = Σii

Geometry

Moments

3.2.5. Partitioned Gaussian Distributions

3.3. Central Limit Theorem

The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N increases. That
is, with N →∞, it converges towards a Gaussian.

3.4. Probability Rules

Joint Distribution
p(x, y)

Marginal Distribution
p(y) =

∫
p(x, y) dx

Conditional Distribution
p(y |x) = p(x, y)

p(x)

Probabilistic/Stochastic Independence

p(x, y) = p(x)p(y)
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Chain Rule of Probabilities

p(x1, · · · , xn) = p(x1 |x2, · · · , xn)p(x2, · · · , xn)
= p(x1 |x2, · · · , xn)p(x2 |x3, · · · , xn) · · · p(xn−1 |xn)p(xn)

Bayes Rule

p(y |x) = p(x | y)p(y)
p(x)

• Posterior: p(y |x)

• Likelihood: p(x | y)

• Prior: p(y)

• Normalization Factor: p(x) =
∫
p(x, y) dy =

∫
p(x | y)p(y) dy

3.5. Expectation, Variance and Moments

3.5.1. Expectation

The expectation value of a random variable x with a distribution p(x) is defined as:

Ex∼p(x)

(
f(x)

)
= Ex

(
f(x)

)
= E

(
f(x)

)
=

{∑
x f(x) p(x) for discrete distributions∫

x f(x) p(x) dx for continious distributions

This gives a similar formula for the conditional expectation:

Ex∼p(x | y)
(
f(x)

)
= Ex

(
f(x)

)
= E

(
f(x)

)
=

{∑
x f(x) p(x | y) for discrete distributions∫

x f(x) p(x | y) dx for continious distributions

With enough samples, the expectation value can be approximated using the arithmetic mean:

E
(
f(x)

)
≈ 1

N

N∑
i=1

f(xi)

Calculation Rules Let x, y be random variables and α ∈ R.

E(αx) = αE(x)
E(x+ y) = E(x) + E(y)

E(xy) = E(x)E(y)

Equation 3.5.1 only holds if x and y are statistically independent.
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3.5.2. Variance and Covariance

The variance measures the spread of the variable in relation to its mean:

Var(x) = E
((
x− E(x)

)2)
= E

(
x2
)
−
(
E(x)

)2
The covariance measures the correlation between two variables (how much the variables change together):

Cov(x, y) = Ex,y(xy)− Ex(x)Ey(y)

Cov(x,y) = Ex,y(xy
T )− Ex(x)Ey(y

T )

This gives the following very important rule (with µ and Σ from the Gaussian):

E(xxT ) = µµT +Σ

3.5.3. Moments

A moment is defined as
mn = E

(
xn
)

The central moment is defined as
cmn = E

(
(x− µ)n

)
which leads to another definition of the variance, skewness and kurtosis:

cm2 Variance (measure of spreading)

cm3 Skewness (measure of asymmetry)

cm4 Kurtosis (measure of heavy/light tailed-ness)

3.6. Exponential Family

The exponential family is a large class of distributions that are analytically interesting, because taking the log
of them simplifies them a lot. All distributions of this family are unimodal with the following general form:

p(x |η) = h(x)g(η) exp
{
ηTu(x)

}
where η is the natural parameter and

g(η)

+∞∫
−∞

h(x) exp
{
ηTu(x)

}
= 1

holds. g can be interpreted as a normalization to make this property hold true.
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3.6.1. Example: Bernoulli Distribution

The Bernoulli distribution is part of the exponential family and decomposes as
Bern(x |µ) = µx(1− µ)1−x

= exp
{
x ln(µ) + (1− x) ln(1− µ)

}
= (1− y) exp

{
ln

(
µ

1− µ

)
x

}
with the logistic sigmoid

σ(η) =
1

1 + exp(−η)
and

η = ln

(
µ

1− µ

)
we can write the Bernoulli distribution as

p(x |µ) = σ(−η) exp(ηx)

which, in the exponential family form, gives:
h(x) = 1 g(η) = σ(−η) u(x) = x

3.6.2. Example: Gaussian Distribution

The Gaussian distribution is part of the exponential family and decomposes as

N (x |µ, σ2) =
1√
2πσ2

exp

{
− 1

2σ2
(x− µ)2

}

=
1√
2πσ2

exp

{
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2

}
= h(x)g(η) exp

{
ηTu(x)

}
with

η =
[
− 1

2σ2
µ
σ2

]T
h(x) = 1 g(η) =

√
−η1

π
exp

{
η22
4η1

}
u(x) =

[
x2

x

]

3.7. Information Theory and Entropy

Information theory is about how to represent information compactly (as few bits as possible) and therefore
about compression.
This raises three questions:
• How to measure complexity?
• How to measure the “distance” between probability distributions?
• How to reconstruct data?
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3.7.1. Information and Entropy

• Information is hiding in data.

• E.g. in the English alphabet, every letter has a different probability pi of occurring.

• A lower probability indicates that the data point contains more information.

• The average information, called entropy can be calculated as

H(p) = −
∑
i

pi log2(pi)

3.7.2. Kullback-Leibler Divergence

The Kullback-Leibler Divergence is a similarity measurement between probability distributions, defined by

KL(p ∥ q) = −
∫

p(x) ln
(
q(x)

)
dx−

(
−
∫

p(x) ln
(
p(x)

)
dx

)

= −
∫

p(x) ln

(
q(x)

p(x)

)
dx

The KL divergence represents the average additional number of bits required to specify a symbol x, if the
underlying probability distribution is the estimated q(x) and not the true one p(x).
Some properties:

• KL(p ∥ q) ̸= KL(q ∥ p) not a distance

• KL(p ∥ q) ≥ 0 non-negative distance

• (∀x : p(x) = q(x)
)

=⇒ KL(p ∥ q) = 0

There exist other metrics than KL, but KL is deeply connected to maximum likelihood estimation.

3.8. Wrap-Up

• Random variables (both continuous and discrete)

• Probability distributions

• Basic rules of probability theory

• Expectation and variance

• Gaussian distribution and its importance

• Information and entropy
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4. Fundamentals: Optimization

“All learning problems are essentially optimization prob-
lems on data” (Christopher G. Atkeson, Professor at
CMU)

All machine learning problems are optimization problems in the form

min
θ

J(θ,D)

s.t. f(θ,D) = 0

g(θ,D) ≥ 0

with parameters θ to enable learning, a data set D to learn from, a cost function J(θ,D) to measure the
performance and equality and inequality constraints f(θ,D) = 0, g(θ,D) ≥ 0.

4.1. Convexity

A set C ⊆ Rn is convex iff for all x,y ∈ C and for all α ∈ [0, 1] the following holds:

αx+ (a− α)y ∈ C

Intuition: Every point on a line drawn between two arbitrary points in space lie in the set itself. The set has
no “bays”.
A function f : Rn → R is convex iff for all x,y ∈ Domain(f) and for all α ∈ [0, 1] the following holds:

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y)

Intuition: The drawn line between two arbitrary points on the function do not cross the function (they may
touch, so linear functions are also convex).
If f is differentiable, it is convex iff for all x,y ∈ Domain(f) the following holds:

f(y) ≥ f(x) +∇x(y − x)

If f is twice differentiable, it is convex iff for all x ∈ Domain(f) the following holds:

∇2
xf(x) ⪯ 0

Warning: Differentiability is not a condition for con-
vexity!
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Problem Example Cost Functions Resulting Method
Classification minθ

∑n
i=1 ln

(
1+ exp

(
− yix

T
i θ
)) Logistic Regression

minθ1,θ2
∑n

i=1

(
yi − g

(
θT2 g

(
θT1 xi

)))2

Neural Network Classification
minθ∥θ∥2 + C

∑n
i=1 ξi

s.t. ξi −
(
1− yix

T
i θ
)
≥ 0, ξi ≥ 0

Support Vector Machines
Regression minθ

∑n
i=1

(
yi − ϕ(xi)

T θ
)2 Linear Regression

minθ1,θ2,θ3
∑n

i=1

(
yi − θT3 g

(
θT2 g

(
θT1 xi

)))2

Neural Network Regression
Density Estimation minθ

∑n
i=1 ln

(
p(xi | θ)

) General Formulation
Clustering minµ1,··· ,µk

∑k
j=1

∑
i∈Cj
∥xi − µi∥2

Table 4.1.: Common Cost Functions

4.2. Cost Functions

An ideal cost function is convex. But most of the time, they are not. . .

4.2.1. Common Cost Functions

Table 4.1 lists common cost functions for classification, regression, density estimation and clustering.

4.3. Constrained/Unconstrained Optimization

The general form of a constrained optimization problem is
max
θ

J(θ)

s.t. f(θ) = 0

g(θ) ≥ 0

with a cost function J(θ), some equality constraints f(θ) and inequality constraints g(θ).

4.4. Lagrange Multipliers

With a constrained optimization problem in the general form, the Lagrangian is defined as
L(θ,λ,µ, ϵ) = J(θ) + λTf(θ) + µT

(
g(θ + ϵ2)

)
The coefficients λ and µ are called Lagrangian Multipliers, the variables ϵ are called slack variables and are
used to convert the inequality constraints into equality constraints.
To solve the optimization problem, take the derivatives w.r.t. θ, λ and µ and set them to zero:

∇θL = 0 ∇λL = 0 ∇µL = 0

If this results in any ϵi = 0, the inequality constraint is called active and the solution lies on the edge of that
constraint. To check whether the result really is a minima/maxima, take the second derivative of the cost
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function w.r.t. θ, ∇2
θJ(θ), and check whether the resulting Hessian is positive or negative definite, yielding

that the found solution is a minima or maxima, respectively.

4.4.1. Dual Formulation

Given the so-called primal problem

min
θ

J(θ)

s.t. f(θ) = 0

g(θ) ≥ 0

with the Lagrangian
L(θ,λ,µ, ϵ) = J(θ) + λTf(θ) + µT

(
g(θ + ϵ2)

)
the dual problem is

max
λ,µ
L̂(λ,µ, ϵ) = min

θ
L(θ,λ,µ, ϵ2)

s.t. λ ≥ 0

µ ≥ 0

• If λ∗ is the solution for the dual problem, then L̂(λ∗) is a lower bound for the primal problem due to two
concepts:

– Minimax inequality: For any function with two arguments ϕ(x, y), the maximin is less or equal to
the minimax:

max
y

min
x

ϕ(x, y) ≤ min
x

max
y

ϕ(x, y)

– Weak duality: The primal values are always greater or equal to the dual values:

min
θ

max
λ≥0
µ≥0

L(θ,λ,µ) ≥ max
λ≥0
µ≥0

min
θ
L(θ,λ,µ)

• In machine learning, the dual is often far more useful than the primal.

• That is because L̂ is a concave function and easy to optimize, even if J and the constraints may be
nonconvex.

• Given some λ and µ, the dual is an unconstrained problem.

4.4.2. Example

Given the following optimization problem (in the real numbers):

argmax
x,y

J(x, y) = x+ y

s.t. x2 + y2 − 1 = 0

2− x ≥ 0
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the Lagrangian is written as

L(x, y, λ, µ, ϵ) = x+ y + λ(x2 + y2 − 1) + µ(2− x+ ϵ2)

Take the derivatives:

∇xL = 1 + 2λx− µ

∇yL = 1 + 2λy

∇λL = x2 + y2 − 1

∇µL = 2− x+ ϵ2

∇ϵL = 2µϵ

Settings them to zero gives the insight that either µ = 0 or ϵ = 0 must be true. This must be done per case.

Case 1: µ = 0 This yields the following equation system:

0 = 1 + 2λx

0 = 1 + 2λy

0 = x2 + y2 − 1

0 = 2− x+ ϵ2

with the solution x = y = ± 1√
2
and ϵ2 = 1√

2
− 2, so the inequality constraint is not active as the solution

fulfills the equation x < 2.

Case 2: ϵ = 0 This yields the following equation system:

0 = 1 + 2λx− µ

0 = 1 + 2λy

0 = x2 + y2 − 1

0 = 2− x

Which yields the following solutions:

x1 = 2 x2 = 2

y1 = −i
√
3 y2 = i

√
3

As ϵ = 0, the solution must lie on the edge of the inequality constraint, thus x = 2. As only real solutions
where wanted, this solution can be discarded.

4.5. Numerical Optimization

For a lot of optimization problems, the solution cannot be computed analytically, so these have to be approxi-
mated using numerical optimization.
The performance of numerical methods can be measured with the following questions:
• Does the algorithm converge to the optimal solution?
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• How many steps does it take to converge?
• Is the convergence smooth or bumpy?
• Does it work for all types of functions or just a special type (e.g. convex)?
• . . .

Thus boils down to the following metrics that have to be taken into account:
• Number of iterations required
• Cost per iteration
• Memory footprint
• Region of convergence
• Is the cost function noisy?
The basic idea behind numerical optimization is to find a δθ with

J(θ + αδθ) < J(θ)

and to apply iterative updates rules like
θn+1 = θn + αδθ

The key question is: How to find a good direction δθ?

4.5.1. Learning Rate

There are two basic methods for finding the learning rate α:
• Line Search

The learning rate is searched for each step with
αn = argmin

α
J(θn + αδθn)

• Constant Learning Rate
The learning rate α = const is just fixed and not dynamically determined.

• Adaptive Learning Rate
The learning rate α is changed in each step according to some rules. Note that line search is kind of
an adaptive learning rate that does not take previous learning rates into account. See 13.6.2 for more
information about adaptive learning rates.

4.5.2. Test Functions

For testing the performance of the methods, well-known functions with interesting properties are used.

Quadratic Function

J(θ) = (θ1 − 5)2 + (θ1 − 5)(θ2 − 5) + (θ2 − 5)2

The quadratic function is plotted in 4.1.

32



−10 −5 0 5 10 15
−5

0

5

10

15

θ1

θ 2

100

200

300

400

Figure 4.1.: Quadratic Function

Rosenbrock Function

J(θ) =
(
θ2 − θ21

)2
+ 0.01(1− θ1)

2

The Rosenbrock function is plotted in 4.2.

4.5.3. Axial Iteration

Alternate minimization for each axis.

4.5.4. Steepest Descent

• Also called gradient descent.
• Move in the direction of the gradient ∇J(θ).
• The gradient is perpendicular to the contour lines and the next gradient is always orthogonal to the

previous step direction after line minimization.
• As the gradient points into the direction of the maximum, the gradient has to be added for maximization

and subtracted for minimization (with a positive step size).
• Problem: The gradient walks down in a zig-zag line that is very inefficient.

Algorithm 1 shows gradient descent in its basic version with a fixed learning rate α and the initialization
vector 0. The algorithm terminates after n iterations. For maximization, the minus in line 3 has to be changed
to a plus.

Test Functions

The plot of gradient descent working on the Rosenbrock function is plotted in figure 4.3, on the Quadratic
function in figure 4.4.
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Figure 4.2.: Rosenbrock Function

Algorithm 1: Steepest Descent (Minimization)
1 θ(1) ← 0
2 for i = 1, · · · , n do
3 θ(i+1) ← θ(i) − α∇θJ(θ)

4 return θ(n+1)

4.5.5. Newtons Method

Newtons method uses the first-order Taylor approximation

J(θ + δθ) ≈ J(θ) +∇θJ(θ)
T δθ +

1

2
δθT∇2

θJ(θ)δθ

= c+ gT δθ +
1

2
δθTHδθ =: J̃(δθ)

where g is the Jacobian and H is the Hessian.
Minimizing this approximation yields the solution

δθ = −H−1g

• Has quadratic convergence and finds the optimal solution for quadratic functions in one step (in the
case of a learning rate α = 1).

• If the Hessian is positive definite, δθ is guaranteed to point downhill.

• If the Hessian just equals the identity matrix H = I, this method is equal to steepest descent.

• Problem: Computing the Hessian at every iteration is extremely expensive and often not feasible (the
inversion can be removed by transforming it into a linear equation system).

Algorithm 2 shows Newtons method for minimization.
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Figure 4.3.: Steepest Descent on Rosenbrock

Algorithm 2: Newtons Method (Minimization)
1 θ(1) ← 0
2 for i = 1, · · · , n do
3 θ(i+1) ← θ(i) − αH−1

(
θ(i)
)
g
(
θ(i)
)

4 return θ(n+1)
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Figure 4.4.: Steepest Descent on Quadratic
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Figure 4.5.: Newtons Method on Rosenbrock

Test Functions

The plot of newtons method working on the Rosenbrock function is plotted in figure 4.5, on the Quadratic
function in figure 4.6.

4.5.6. Quasi-Newton Method (BFGS)

• Approximate the Hessian using
– Hessians change slowly,
– Hessians are symmetric and
– the derivatives interpolate.

This gives the following optimization problem:

min ∥H −Hn∥
s.t. H = HT

H
(
θ(n+1) − θ(n)

)
= g
(
θ(n)

)
− g
(
θ(n)

)
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Figure 4.6.: Newtons Method on Quadratic
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Using this, the Hessian can be computer iteratively:

H−1
n+1 =

(
I − sny

T
n

yn · sn

)
H−1

n

(
I − yns

T
n

yn · sn

)
+

sns
T
n

yn · sn

yn = g
(
θ(n+1)

)
− g
(
θ
)

sn = θ(n+1) − θ(n)

• The first step in the algorithm can be slightly off due to initialization errors.

• For great dimensions, BFGS is preferred over the others as it does not require to compute the Hessian.

Algorithm 3 shows BFGS for minimization.

Algorithm 3: Quasi-Newton-Method, BFGS (Minimization)
1 θ(1) ← 0

2 H−1
1 ← 0

3 for i = 1, · · · , n do
4 θ(i+1) ← θ(i) − αH−1

i

(
θ(i)
)
g
(
θ(i)
)

5 y ← g
(
θ(n+1)

)
− g
(
θ
)

6 s← θ(n+1) − θ(n)

7 H−1
i+1 =

(
I − syT

y·s

)
H−1

i

(
I − y sT

y·s

)
+ s sT

y·s

8 return θ(n+1)

Test Functions

The plot of BFGS working on the Rosenbrock function is plotted in figure 4.7, on the Quadratic function in
figure 4.8.

4.5.7. Conjugate Gradient (CG)

• Conjugate gradient choose the descent direction δθ such that it is guaranteed to reach the minimum in a
finite number of steps.

• Each δθ is chosen to conjugate all previous search directions w.r.t. the Hessian.

• The resulting search directions are mutually linearly independent.

• This avoid undoing previously done work.

• An N -dimensional quadratic function can be minimized in at most N CG steps.

• Also avoids computing the Hessian!

• δθ(n) is calculated using only δθ(n−1), ∇θ

(
θ(n)

) and ∇θ

(
θ(n−1)

):
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Figure 4.7.: BFGS on Rosenbrock
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Figure 4.8.: BFGS on Quadratic
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δθ(n) = ∇θJ
(
θ(n)

)
+

∣∣∣∇θJ
(
θ(n)

)∣∣∣2∣∣∣∇θJ
(
θ(n−1)

)∣∣∣2 δθ(n−1)

Algorithm 4 shows CG for minimization.

Algorithm 4: Conjugate Gradients (Minimization)
1 θ(0) ← 0

2 θ(1) ← 0

3 δθ(1) ← 0
4 for i = 1, · · · , n do

5 δθ(i+1) ← ∇θJ
(
θ(i)
)
+

∣∣∇θJ
(
θ(i)
)∣∣2∣∣∇θJ

(
θ(i−1)

)∣∣2 δθ(i−1)

6 θ(i+1) ← θ(i) − α δθ(i+1)

7 return θ(n+1)

Test Functions

The plot of CG working on the Rosenbrock function is plotted in figure 4.9, on the Quadratic function in
figure 4.10.

4.5.8. Conjugate Gradients vs. BFGS

• BFGS is more costly per iteration than CG.
• BFGS converges in fewer steps.
• BFGS has less tendency to get stuck.
• BFGS requires algorithmic “hacks” to achieve a significant descent per iteration.
• Which one is better depends on the problem.

4.6. Wrap-Up

• Relation between machine learning and optimization
• Properties of good cost functions
• Convex sets and functions
• Importance of convex functions in machine learning
• Constrained and unconstrained optimization problems
• Lagrangian formulation
• Different numerical methods
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Figure 4.9.: CG on Rosenbrock
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Figure 4.10.: CG on Quadratic
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5. Bayesian Decision Theory

Bayesian decision theory is a statistical approach to make optimal decisions.

• All data in machine learning is generated by a stochastic process that is governed by the rules of
probability.

• The data is understood as a set of samples from some underlying probability distribution.

5.1. Character Recognition

Goal: Classify a new letter so that the probability of a wrong classification is minimized where the only
possibilities are a and b.

5.1.1. Class Conditional Probabilities

The class conditional probability (likelihood) p(x |Ck) is the probability of making an observation x knowing
that it comes from some specific class Ck. x is often the feature vector, e.g. the number of black pixels, the
height of black pixels, etc.
Let x be the height of black pixels and therefore a scalar value x inR.

• This yields some useful decision theory: Given some x, decide for class a if p(x | a) ≥ p(x | b).

• But: If p(x | a) = p(x | b), this yields no solution and class priors have to be taken into account.

Example Figure 5.1 shows some example conditional properties.

• For x = 5 or x = 11, the decision is clear (choose a or b respectively).

• But for x = 8, its completely unclear.

5.1.2. Class Priors

A class prior is a a-priori probability of a letter to occur (e.g. in the English alphabet, the probability of
observing the letter e is much higher than observing a y).

• All class priors have to sum up to one (it must be anything).
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Figure 5.1.: Class Conditional Probabilities

Example In the text aaaaaaaabbabbaaaaaaa, the class priors are:

C1 = a

C2 = b

p(a) =
16

20
= 80%

p(b) =
4

20
= 20%∑

k

p(Ck) = p(a) + p(b) = 1

By using Bayes theorem, the posterior can be calculated and the likelihood can be scaled by the prior to give a
better view on the problem. Scaling by the normalization factor visualized the decision boundary.
Figure 5.2 shows these plots.

5.2. Bayesian Decision Theory

With the class conditional probability p(Xk |x) and the prior p(Ck), the class posterior can be calculated as

p(Ck |x) =
p(x |CK)p(Ck)

p(x)
=

p(x |CK)p(Ck)∑
j p(x |Cj)p(Cj)

5.3. Bayesian Probabilities

• With Bayesian probabilities, probability is not just interpreted as a frequency of certain events, but as a
degree of belief in an outcome.

• This allows to assert a prior belief in a data point coming from a certain class.
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Figure 5.2.: Class Priors

5.4. Misclassification Rate

The goal of Bayesian decision theory is to minimize the misclassification rate, the probability of making a
wrong decision:

p(error) = p(x ∈ R1, C2) + p(x ∈ R2, C1) =

∫
R1

p(x |C2)p(C2) dx+

∫
R2

p(x |C1)p(C1) dx

5.5. Decision Rule, Optimal Classifier and Decision Boundary

The basic decision rule is to decide for C1 iff

p(C1 |x) > p(C2 |x) ⇐⇒ p(x |C1)

p(x |C2)
>

p(C2)

p(C1)

A classifier that obeys this rule is called Bayesian optimal classifier.
The decision boundary is the point where p(x |C1)

p(x |C2)
= p(C2)

p(C1)
. This line (or curve) can then be drawn into some

graph and is the point where the classifier “switches” to the other class. This is most of the time only used for
understanding what the classifier does than for real application (however, understanding what happens is
really important).

5.5.1. Multiple Classes

Decide for class k iff it has the highest a-posteriori probability (∀j ̸= k)

p(Ck |x) > p(Cj |x) ⇐⇒ p(x |CK)

p(x |Cj)
>

p(Cj)

p(Ck)

This yields more decision regions and multiple decision boundaries.
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5.5.2. High Dimensional Features

For a lot of problems, the feature vector must have more than one entry, so x ∈ Rn with n ≥ 2. The derived
decision boundaries still apply, but multivariate class conditional densities p(x |Ck) have to be taken into
account.

5.6. Dummy Classes

In some applications, a dummy class “don’t know” or “don’t care” must be present (also called reject option).

5.7. Risk Minimization

• Minimizing the misclassification rate may not alway be enough, as not every misclassification may be
equally bad.

• The key idea is to construct a loss function (or cost function) that expresses which misclassifications are
really bad and which are not so bad.

• This loss function is called λ(αi |Cj), where Cj is the actual class and αi is the decision. Let λij :=
λ(αi |Cj).

• The expected loss of making a decision αi (the overall risk) then calculates as:

R(αi |x) = ECk∼p(Ck |x)
(
λ(αi |Ck)

)
=
∑
j

λ(αi |Cj)p(Cj |x)

• So instead of minimizing the misclassification rate, minimize the overall risk.

5.7.1. Decision Rule

Decide for class C1 iff

R(α2 |x) > R(α1 |x) ⇐⇒ p(x |X1)

p(x |X2)
>

λ12 − λ22

λ21 − λ11

p(C2)

p(C1)

This rule can be generalized for multiple classes and high dimensional features just like before.
Applying a 0-1 loss function

λ(αi |Cj) =

{
0 i = j

1 i ̸= j

yields the decision rule without an explicit loss function as seen in section 5.5.

5.8. Wrap-Up

• Class-conditional probabilities, class priors and class posteriors
• Bayesian decision theory
• Usage of Bayes theorem for classification
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• Misclassification rate

• Bayes optimal classifier

• Generalization of decisions for more than two classes

• Risk and relation to misclassification
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6. Probability Density Estimation

Probability density estimation (PDE) is about to estimate/learn the class conditional probability density
p(x |Ck).

• In supervised learning, both the input data points and their true labels/classes are known.

• The density is estimated separately for each class Ck.

• Let p(x) := p(x |Ck) for simplicity.

• There exist three models for PDE:
– Parametric Models
A “small” number of parameters completely define the probability density.

– Non-Parametric Models
No explicit parameters are used, but every known data point is used as a parameter (so, non-
parametric models have as much parameters as there is data).

– Mixture Models
Combination of both.

6.1. Parametric Models

A simple case for a parametric model is the Gaussian distribution

p(x |µ, σ2) =
1√
2πσ2

exp

{
− 1

2σ2
(x− µ)2

}

that is governed by two parameters: mean µ and variance σ2. If both are known, the probability distribution
is fully described.
The notation to say “variable x is defined by the parametric model p(x | θ) with parameters θ”, write

x ∼ p(x | θ). For a Gaussian, the parameters are θ = (µ, σ2).

• Learning means to estimate the parameters θ given some training data X = {x1, x2, · · · }.

• The likelihood of θ (the probability that the data X was generated from a probability density function
with parameters θ) is defined as

L(θ) = p(X | θ) ifi.i.d.
=

N∏
i=1

p(xi | θ)
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6.1.1. Maximum Likelihood

Assume that all data is i.i.d.!

• The parameters θ can be estimated by maximizing the likelihood.

• If a model has more than one parameter, maximize it w.r.t. each parameter once to get multiple estimators
for the different parameters.

• Instead of maximizing the normal likelihood L(θ), it is mostly better to maximize the log-likelihood
L(θ) = lnL(θ) because:

– it removes the product and turns it into a sum and
– for members of the exponential family, removes the exponential part and splits the products into

additions.
This is possible because the logarithm is strictly increasing. In fact, every strictly increasing function can
be used, but the logarithm is most of the time the best decision.

L(θ) = ln
(
L(θ)

)
= ln p(X | θ) =

N∑
i=1

ln p(xn | θ)

• Then maximize the log-likelihood by taking the derivative w.r.t. θ (or the parameter to be estimated)
and set them to zero.

Example Given the Gaussian probability density

p(x |µ, σ2) =
1√
2πσ2

exp

{
− 1

2σ2
(x− µ)2

}

the log-likelihood computes as

L = ln
N∏
i=1

1√
2πσ2

exp

{
− 1

2σ2
(xi − µ)2

}

=

N∑
i=1

ln
1√
2πσ2

− 1

2σ2
(xi − µ)2

To estimate µ, take the derivative and set it so zero (this maximizes the likelihood w.r.t. the mean):

∇µL =
1

σ2

N∑
i=1

(xi − µ) = −N 1

σ2
µ+

1

σ2

N∑
i=1

xi

=⇒ 0 = − 1

σ2
Nµ+

1

σ2

N∑
i=1

xi

⇐⇒ µ =
1

N

N∑
i=1

xi
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this yields the arithmetic mean as an estimator for the expectation value.
To estimate σ2, take the derivative and set it so zero:

∇σL =
N∑
i=1

− 1

σ
+

1

σ3
(xi − µ)2 = − 1

σ
N +

1

σ3

N∑
i=1

(xi − µ)2

=⇒ 0 = − 1

σ
N +

1

σ3

N∑
i=1

(xi − µ)2

⇐⇒ σ2 =
1

N

N∑
i=1

(xi − µ)2

this yields an estimator for σ2. But this estimator is biased, so the maximum likelihood estimation not always
yields an unbiased estimator.

6.1.2. Degenerate Case

If only one data point is available (N = 1, X = {x1}), the resulting Gaussian stretches infinitely to the top on
one point, so is the likelihood.
To still get a useful estimate, a prior has to be put on the mean. This leads to Bayesian estimation.

Explanation A probability density function p(x) such as the Gaussian has to integrate to 1:
+∞∫

−∞

p(x) dx = 1

If the Gaussian has no variance σ2 = 0, it does only have positive values on one exact point (p(µ) > 0). As
the integral can be thought of as calculating the “area under the curve”, the function has to be somewhat
2-dimensional to have an area. In small ∆x, the integral can be approximated with a square

x+∆x∫
x

p(x) dx ≈ p(x)∆x

By just looking at the square “withing” the mean p(µ)∆x, the ∆x shrinks to 0 as the variance is zero.
But the density function has to integrate to 1!
This way, we get:

1 =

+∞∫
−∞

p(x) dx =

µ∫
−∞

p(x) dx+

µ∫
µ

p(x) dx+

+∞∫
µ

p(x) dx =

µ∫
µ

p(x) dx = lim
∆x→0

p(µ)∆x

=⇒ p(µ)→∞

to match the requirement.
This can also be calculated with lim

x→0

1
x →∞.
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6.1.3. Bayesian Estimation

• In Bayesian estimation/learning of parametric distributions, it is assumed that parameters are not fixed,
but are random variables too.

• This allows the usage of prior knowledge about the parameters.
The dependence on a prior can be formulated as a conditional probability p(x |X):

p(x |X) =

∫
p(x, θ |X) dθ p(x, θ |X) = p(x | θ,X)p(θ |X)

As p(x) is fully determined by θ (it is a sufficient statistic), p(x | θ,X) = p(x | θ) holds. This way, the above
equation can be simplified:

p(x |X) =

∫
p(x | θ)p(θ |X) dθ

The probability p(θ |X) makes it explicit how the parameters depend on the data and can be calculated
using Bayes theorem

p(θ |X) =
p(X | θ)p(θ)

p(X)

with the prior p(θ).
If p(θ |X) is small for most θ, but large for a specific θ̂, the probability density p(x |X) can be estimated as

p(x |X) ≈ p(x | θ)

this is called Bayes point. The more uncertain the estimator is about θ̂, the more the density is averaged across
multiple θ.

Problem: Most of the time it is impossible to integrate over θ (or just do so numerically). Analytical solutions
are rare.

Gaussian Bayesian Estimation

For a Gaussian distribution, there exists a closed form solution to estimate the density

p(µ |X) =
p(X |µ)p(µ)

p(X)

when the variance of the data distribution is known and fixed with prior p(µ) = µ′, σ
∈
′ .

Then, with the sample mean x̄ = 1
N

∑N
i=1 xi, the parameters of the distribution p(µ |X) ∼ N (µN , σ2

N =
can be estimated as

µn =
Nσ2

0 + σ2µ0

Nσ2
0 + σ2

1

σ2
N

=
N

σ2
+

1

σ2
0

where σ2 is the variance of the data distribution, (µ0, σ
2
0) are the parameters of the prior and (µN , σ2

n) are the
parameters to be estimated.

Conjugate Priors

• Conjugate priors are prior distributions that do not change the distribution family of the posterior
distribution family, i.e. they both lie in the same distribution family.

• Gaussians are conjugate to themselves, which yields elegant closed form solutions.
• In general, this is not the case which makes everything more complicated.
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6.2. Non-Parametric Models

• Non-parametric models are useful if the underlying probability density distribution family is unknown.
• They are directly estimated from data, without an explicit parametric model.
• Every data point is a parameter, so non-parametric models have an uncertain and possibly infinite

number of parameters.
• The biggest problem with most estimation models is the “too smooth vs. not smooth enough” problem.
• Note: All of the following examples use a dataset of 10000 data points that was generated by a mixture

of two Gaussians (5, 10) and N (10, 5), both equally weighted. which is plotted in red as the actual
distribution.

6.2.1. Histograms

• Histograms discretize the continuous feature space into discrete bins of data.
• They can be used for nearly every problem and can approximate any probability density arbitrarily well

with the right data set.
• But it is a brute-force method.
• In high dimensional feature spaces, histograms become impractical because of the exponential increase

of bins. They require exponentially much data. This is known as the curse of dimensionality.
• The size of the bins is somewhat arbitrary.

Formally The probability that a data point x falls into Region R is measured as

P (x ∈ R) =

∫
R
p(x) dx

If R is sufficiently small with volume V , p(x) is almost constant:

P (x ∈ R) ≈ p(x)V

If R is sufficiently large with volume V :

P (x ∈ R) =
K

N
=⇒ p(x) ≈ K

NV

where N is the total number of data points and K is the number of points that fall into region R.

Example Figure 6.1 shows three histograms that are not smooth enough (bin size 0.5), just right (bin size 3)
and too smooth (bin size 20).

6.2.2. Kernel Density Estimation (KDE)

Kernel density estimation (KDE) is a variation of “histograms” where V gets fixed and K is determined (i.e.
count the data points that fall in a fixed hypercube).
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Figure 6.1.: Histogram
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Figure 6.2.: Kernel Density Estimation (Parzen Window)

Parzen Window

These hypercube is called Parzen window in d dimensions with edge length h. It has the following equations:

H(u) =

{
1 |uj | ≤ h

2 , j = 1, · · · , d
0 otherwise

V =

∫
H(u) du = hd

K(x) =
N∑
i=1

H
(
x− x(i)

)
=⇒ p(x) ≈ K(x)

NV
=

1

Nhd

N∑
i=1

H
(
x− x(i)

)
Example Figure 6.2 shows the estimated density distribution using kernel density estimation with a Parzen
window.
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Gaussian Kernel

The Gaussian kernel uses a “soft” window in d dimensions with parameter h and gives smoother results than
the Parzen window. Problem: Has infinite support and requires a lot of computation. It has the following
equations:

H(u) =
1(√

2πh2
)d exp

{
− ∥u∥

2

2h2

}

V =

∫
H(u) du = 1

K(x) =

N∑
i=1

H
(
x− x(i)

)
=⇒ p(x) ≈ K(x)

NV
=

1

N
(√

2πh2
)d N∑

i=1

exp

{
− ∥x− x(i)∥2

2h2

}

Example Figure 6.3 shows the estimated density distribution using kernel density estimation with a Gaussian
kernel. The parameter h = 5 seems to fit the density the best at the first view while not being too noisy.

Arbitrary Kernel

An arbitrary kernel has the following form and the kernel function k(u) (which must have the properties
k(u) ≥ 0 and ∫ k(u) du = 1):

V = hd

K(x) =

N∑
i=1

k

(
∥x− x(i)∥2

h

)

=⇒ p(x) ≈ K(x)

NV
=

1

Nhd

N∑
i=1

k

(
∥x− x(i)∥2

h

)

Common Kernel Comparison

All kernel methods have one problem in common: The kernel bandwidth h has to be selected properly.

Parzen Window

k(u) =

{
1 |u| ≤ 1

2

0 otherwise
• Not very smooth results.

Gaussian Kernel

k(u) =
1√
2π

exp

{
− 1

2
u2

}
• Problem: Kernel has infinite support and requires a lot of computation.
• But gives much smoother results than the Parzen window.
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Figure 6.3.: Kernel Density Estimation (Gaussian Kernel)
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Figure 6.4.: K-Nearest Neighbors

Epanechnikov Kernel

k(u) = max

{
0,

3

4
(1− u)2

}
• Smoother and has finite support.

6.2.3. K-Nearest Neighbors (KNN)

Kernel density estimation (KDE) is a variation of “histograms” where K gets fixed and V is determined (i.e.
increase the size of a sphere until K data points fall into it). In general, KNN produces a pretty noisy density
estimation and is very sensitive to small changes.

Example Figure 6.4 shows the estimated density distribution using K-nearest neighbors. The parameter
K = 75 seems to fit the density the best at the first view while not being too noisy (of course it is still pretty
noise, because it is KNN).
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Classification

Assume a data set with N points, where Nj is the number of points in class Cj and
∑

j Nj = N . To classify a
new point x, draw a sphere around the point that contains K points (regardless which class they belong to).
Let V be the volume of the sphere that contains Kj points of class Cj .
With Bayesian classification

P (Cj |x) =
P (x |Cj)P (Cj)

P (X)

this yields the solution

P (X) ≈ K

NV
P (x |Cj) ≈

Kj

NjV
P (Cj) ≈

Nj

N
=⇒ P (Cj |x) ≈

Kj

NjV

Nj

N

NV

K
=

Kj

K

This, with KNN, the posterior probability can be computed without the knowledge about how many data
points are available and without an explicit influence of the sphere size.

6.3. Mixture Models

Mixture models combine parametric and non-parametric models.
The probability density p(x) of a mixture model can be described as

p(x) =

M∑
j=1

p(x | j)p(j)

where M is the number of mixture components and p(j) is the probability (or weight) of mixture component
j. These probabilities have to sum up to one.

6.3.1. Mixture of Gaussians

A mixture of Gaussians (MoG) is one of the basic mixture models. It has the following form (where p(x | j) is
just another notation for p(x |Cj), similar for other probability densities):

p(x) =
M∑
j=1

p(x | j)p(j)

p(x | j) = N (x |µj , σ
2
j ) =

1√
2πσ2

j

exp

{
− 1

2σ2
j

(x− µj)
2

}

p(j) = πj , 0 ≤ πj ≤ 1,

M∑
j=1

πj = 1

with the mixture parameters θ = {µ1, σ
2
1, π1, · · · , µM , σ2

M , πM}.

60



20 0 20 40

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040 Real Mixture
Real Gaussian A (Scaled)
Real Gaussian B (Scaled)

Figure 6.5.: Mixture of Gaussians

Figure 6.5 shows the mixture of Gaussians that was used for the examples in the previous section that has
the following properties:

p(x | 1) = N (x | 5, 10)
p(x | 2) = N (x | 30, 5)

π1 = π2 =
1

2

=⇒ p(x | 5, 10, 0.5, 30, 5, 0.5) = 1

2
N (x | 5, 10) + 1

2
N (x | 30, 5)

This example will be used for all further examples with a dataset with 10000 data points. The real mixture
distribution is plotted in red.
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Maximum Likelihood Estimation

Applying MLE to a mixture of Gaussians

L = lnL(θ) =

N∑
i=1

ln p(xi | θ)

=⇒ ∇θL = 0

=⇒ µj =

∑N
j=1 p(j |xj)xj∑N
j=1 p(j |xj)

gives a circular dependency through all estimators. Therefore, no analytical solution exist!

Gradient Ascent

• Gradient ascent can be used to maximize the log-likelihood numerically.
• But it typically has a complex (nonlinear, circular) gradient.
• So the optimization of one Gaussian depends on all other components.
• Hard to compute!

Different Strategy Split the data set into observes and unobserved (latent) variables. Typically, x is observed
and p(j |x) is unobserved (the component that has generated an x is latent).

• If both the observed and the latent dataset are known (the complete dataset), the maximum likelihood
solution can be computed via

µj =

∑N
j=1 p(j |xj)xj∑N
j=1 p(j |xj)

• If the distributions are known, the unobserved data can be inferred using Bayes decision rule.
• But if neither the latent dataset nor the distribution is known, an estimation of j is needed. This can be

done using clustering.

6.3.2. Estimation using Clustering

Hard Assignments

• Every points gets assigned a mixture label.
• No points gets “multiple” labels with probabilities. It is a 0-1 labeling (hard assignments).
• The mixture components are then estimated using only this data.

Gaussians If a guess about the distribution is available, but the unobserved data is not, the probabilities can
be calculated for each mixture component:

p(j |x) = p(x | j)πj∑M
j=1 p(x | j)πj

62



Expectation Maximization (EM)

Let be the observed data and let be the latent data, so the complete data is Z = (X,Y ).

• The expectation maximization (EM) algorithm is used to perform maximum likelihood estimation even if
the data is incomplete.

• Idea: Estimate the latent variables and use the estimations to estimate the distribution parameters.

• In case of Gaussian mixtures, associate every data point to one of the mixture components.

Properties andDefinitions With the observed dataX = {x1, · · · , xN}, the unobserved data Y = {y1, · · · , yN}
and the joint density

p(Z) = p(X,Y ) = p(Y |X)p(X)

with parameters
p(Z | θ) = p(X,Y | θ) = p(Y |X, θ)p(X | θ)

the incomplete and complete likelihood can be defined as:

• Incomplete Likelihood

L(θ |X) = p(X | θ) =
N∏
i=1

p(xi | θ)

• Complete Likelihood

L(θ |Z) = p(Z | θ) = p(Y |X, θ)p(X | θ) =
N∏
i=1

p(yi |xi, θ)p(xi | θ)

Algorithm Y is not known, but the current guess θ(i−1) of the parameters θ can be used to predict Y .
Formally, this is to compute the expected value of the complete log-likelihood given the dataX and the current
estimation θ(i−1):

Q(θ, θ(i−1)) := EY

(
ln p(X,Y | θ) |X, θ(i−1)

)
=

∫
p(y |X, θ(i−1)) ln p(X, y | θ) dy

Repetition: X and θ(i−1) are fixed while Y and θ are (random) variables.
The algorithm then contains two steps:

E-Step (Expectation) Compute p(y |X, θ(i−1)).

M-Step (Maximization) Maximize the expected value of the log-likelihood to get the next estimation
θ(i)

θ(i) = argmax
θ

Q(θ, θ(i−1))
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Formal Properties

• The expected log-likelihood of the i-th iteration is at least as good as that of the i− 1-th iteration:
Q(θ(i), θ(i−1)) ≥ Q(θ(i−1), θ(i−1))

• If this expectation is maximized w.r.t. θ(i), then the following holds:
L(θ(i) |X) ≥ L(θ(i−1) |X)

• Thus, the incomplete log-likelihood increases in every iteration or at least stays the same.
• The incomplete log-likelihood is optimized (locally).
• In practice, the results depend highly on the initialization. A good initialization is crucial or EM might

get stuck in local optima.

Gaussian Mixtures

• In the special case of Gaussian mixtures, there exists a closed form solution.
• Also estimate the variance and the prior distribution over the mixture components.
• Algorithm 5 shows the EM algorithm for univariate Gaussian mixture models, where M is the number

of Gaussians and N is the amount of data.
• Figure 6.6 shows the algorithm in action and shows the progress between the first and last iteration.

Algorithm 5: EM for Univariate Gaussian
1 Initialize µ1, σ1, π1, · · · , µM , σM , πM
2 for i = 1, · · · , n do
3 αkj ← p(j |xk) =

N (xk |µj ,σ
2
j )πj∑M

i=1 N (xk |µi,σ2
i )πi

4 Nj ←
∑N

i=1 αij

5 µnew
j ← 1

Nj

∑N
i=1 αijxi

6 σnew
j ←

√
1
Nj

∑N
i=1 αij

(
xi − µnew

j

)
7 πnew

j ← Nj

N

8 return µ1, σ1, π1, · · · , µM , σM , πM

Derivation the Gaussian EM Algorithm The “EM algorithm” itself is not really an algorithm, but instead a
method to derive an EM algorithm for a probability distribution. This section covers the derivation of the EM
algorithm for univariate Gaussian mixtures. The observed data is X = {x1, · · · , xM} and the latent data is
Y = {y1, · · · , yM} where yi denotes the mixture component a data point xi belongs to.
With discrete yi, the equation for Q(θ, θ(i−1)) simplifies:

Q(θ, θ(i−1)) =
M∑
j=1

p(yj |X, θ(i−1)) ln p(X, yj | θ) =
M∑
j=1

N∑
n=1

p(yj |xn, θ(i−1))︸ ︷︷ ︸
:=αnj

ln p(xn, yj | θ)
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Figure 6.6.: EM for Univariate Gaussian
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Now calculate αnj:

αnj = p(yj |xn, θ(i−1))

=
p(xn, θ

(i−1) | yj)p(xn, θ(i−1))

p(yj)

†
=

p(xn | θ(i−1))p(θ(i−1))

p(yj)

=
p(xn |µj , σ

2
j )πj∑M

i=1 p(xn |µi, σ2
i )πi

Step † is possible because θ(i−1) is a sufficient statistic and therefore fully determines the probability density.
This yields the formula for the E-Step.
To get the formula for the M-Step, insert αnj into Q(θnew, θ(i−1)), simplify, take the derivatives w.r.t. θnew

and set them to zero. Let Nj :=
∑N

n=1 αnj .

Q(θnew, θ(i−1)) =

N∑
j=1

N∑
n=1

αnj ln p
(
xn, yj | θnew

)
=⇒ Qj =

N∑
n=1

αnj ln p
(
xn, yj |µnew

j , σnew
j

)
=

N∑
n=1

αnj ln
1√

2π
(
σnew
j

)2 − αnj
1

2
(
σnew
j

)2 (xn − µnew
j

)2
=⇒ ∇µnew

j
Qj = −Nj

1(
σnew
j

)2µj +
1(

σnew
j

)2 N∑
n=1

αnjxn

=⇒ Njµ
new
j =

N∑
n=1

αnjxn

⇐⇒ µnew
j =

1

Nj

N∑
n=1

αnjxn

=⇒ ∇σnew
j

Qj =
N∑

n=1

−αnj
1

σnew
j

+ αnj
1(

σnew
j

)3 (xn − µnew
j

)2
= − 1

σnew
j

Nj +
1(

σnew
j

)3 N∑
n=1

αnj

(
xn − µnew

j

)2
=⇒

(
σnew
j

)2
Nj =

N∑
n=1

αnj

(
xn − µnew

j

)2
⇐⇒

(
σnew
j

)2
=

1

Nj

N∑
n=1

αnj

(
xn − µnew

j

)2
⇐⇒ σnew

j =

√√√√ 1

Nj

N∑
n=1

αnj

(
xn − µnew

j

)2
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This yields the formula for the M-Step (with the prior calculation πj =
Nj

N as of the definition).
The same technique can be applied to derive EM algorithms for other distributions (e.g. multivariate

Gaussians). Notice that it might not yield a closed form solution, especially for distributions that are not part
of the exponential family (they are kind of “easy” because the exponential disappears with the logarithm),

6.3.3. Mixture Components

• The biggest problem with mixture models is: How many mixture components are needed? More lead to
a better likelihood, but are not always better because of overfitting.

• There exist some heuristics for automatic selection:
– Find a K that maximizes the Akaike information criterion ln p(X | θML) −K where K is the

number of parameters.
– Or find a K that maximizes the Bayesian information criterion ln p(X | θML)− 1

2K lnN where
N is the number of data points.

• Mixture models are much more general than just mixture of Gaussians, the components can even lie in
different distribution families.

6.4. Wrap-Up

• Difference between parametric and non-parametric models

• The likelihood function and how to derive maximum likelihood estimators

• Bayesian estimation

• Different non-parametric models (histogram, KDE, KNN)

• Mixture models

• EM-algorithm
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7. Clustering

Clustering is about to find meaningful groups of data points and find the group assignment. It is a type of
unsupervised learning as no labeled data is needed. Clustering can be split into two different basic types:

• Agglomerative Clustering
– Each data point is made a different cluster.
– While the clustering is not satisfactory, the two clusters with the smallest inter-cluster distance are
merged.

• Divisive Clustering
– All data points lie in a single cluster.
– While the clustering is not satisfactory, split the cluster that yields the two components with the

largest inter-cluster distance.
Note: All of the following examples use a dataset of 1000 data points that was generated by a mixture of the
two-dimensional multivariate Gaussians, plotted in figure 7.1.

7.1. Mean Shift Clustering

Mean shift clustering is a agglomerative clustering method for finding the modes (maxima) in a cloud of data
points where the points are most dense using kernel density estimation and local search.

• The search path starts at different points and “climbs up the hills” (mean shift clustering is a hill climbing
algorithm).

• Paths that converge at the same point get the same label.
The grand scheme is to start with a kernel density estimate

f̂(x) =
1

Nhd

N∑
i=1

k

(
∥x− xi∥2

h2

)

and then derive the mean shift procedure by taking the gradient of the kernel density estimate to calculate
the mean shift mh,g(x):

mh,g(x) =

∑N
i=1 g

(
∥x−xi∥2

h2

)
xi∑N

i=1 g
(
∥x−xi∥2

h2

) − x

where g(u) = −k′(u) and move into the direction x← x+mh,g(x). Repeat this until convergence and repeat
this for each data point. All points that converge to the same data point lie in one cluster.

Algorithm 6 shows the mean shift algorithm in its basic form with a data setX = {x1, · · · ,xN} and learning
rate α.
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Figure 7.1.: Cluster Gaussians

Algorithm 6: Mean Shift Clustering
1 for k = 1, · · · , n do
2 for j = 1, · · · , N do

3 m←
∑N

i=1 g

(
∥xj−xi∥

2

h2

)
xi∑N

i=1 g

(
∥xj−xi∥2

h2

) − xj

4 xj ← xj + αm
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Figure 7.2.: Mean Shift Clustering

Example Figure 7.2 shows the mean shift clustering algorithm on a mixture of three bivariate Gaussian
distributions, figure 7.3 shows the way each data point goes.

7.2. Wrap-Up

• Different algorithms for clustering
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8. Evaluation

The performance for parameter estimation and classification has to be measured in order to compare them
and to detect under-/overfitting.

8.1. Test Error vs. Training Error

• The training error might be really low where the test error is really high. This is an indicator for
overfitting.

• If both errors are large, the model seems to underfit.

• The model selection has to be done carefully!

8.2. Bias and Variance

The bias of an estimator θ̂ is the expected derivation of the true parameter θ (with a data set X):

Bias
(
θ̂
)
= EX

(
θ̂(X)− θ

)
If the expected value of an estimation differs from the true value, the estimator is called biased. If not, is is
called unbiased. The variance is the expected squared error between the estimator and the mean estimator:

Var
(
θ̂
)
:= EX

((
θ̂(X)− EX

(
θ̂(X)

))2)

8.2.1. MVUE and BLUE

• An estimator with zero bias and minimum variance is called a minimum variance unbiased estimator
(MVUE).

• A MVUE that is linear in its features is called best linear unbiased estimator (BLUE).

8.2.2. Bias-Variance Tradeoff

• In practice, an unbiased estimator with a small variance is wanted. But mostly, this is not possible.

• The bias represents the structural error whereas the variance represents the estimation error (finite data
sets will always have variance).

• The expected total error is proportional to Bias2 + Variance. Typically not both can be minimized.
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• The learning algorithm has to find the right tradeoff between bias and variance (simple enough to
prevent overfitting and yet expressive enough to represent the important parts of the data).

• To ensure this, the algorithm has to be evaluated on the test data (see section 8.3).

8.2.3. Example: MLE of a Gaussian

The following to sections will cover the calculation of the bias of the maximum likelihood estimators for a
Gaussian distribution for µ (called µ̂) and σ2 (called σ̂2).

Mean (µ) The estimator is given as

µ̂(X) =
1

N

N∑
i=1

xi

So the bias can be calculated as:

Bias
(
µ̂(X)− µ

)
= EX

(
µ̂(X)− µ

)
= EX

(
1

N

N∑
i=1

xi

)
− µ

=
1

N

N∑
i=1

EX

(
xi
)
− µ

=
1

N

(
N∑
i=1

µ

)
− µ

= µ− µ

= 0

So the MLE of the mean of a Gaussian is unbiased.

Variance (σ2) The estimator is given as

σ̂2(X) =
1

N

N∑
i=1

(
xi − µ̂

)2
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So the bias can be calculated as:

Bias
(
σ̂2(X)− σ2

)
= EX

(
σ̂2(X)− σ2

)
= EX

(
1

N

N∑
i=1

(
xi − µ̂

)2)− σ2

=
1

N

N∑
i=1

EX

((
xi − µ̂

)2)− σ2

=
1

N

N∑
i=1

EX

(
x2i − 2xiµ̂+ µ̂2

)
− σ2

=
1

N

N∑
i=1

EX

(
x2i − µ̂2

)
− σ2

=
1

N

N∑
i=1

EX

(
x2i
)
− EX

(
µ̂2
)
− σ2

= EX

(
x2
)
− EX

(
µ̂2
)
− σ2

With σ2 = E
(
x2
)
− E

(
x
)2 and σ̂2 = E

(
µ̂2
)
− E

(
µ̂
)2 and E

(
x
)
= E

(
µ̂
):

=
(
σ2 + E

(
x
)2)− (σ̂2 + E

(
µ̂
)2)− σ2

=
(
σ2 + µ2

)
−
(
σ̂2 + µ2

)
− σ2

= −σ̂2

= −Var

(
1

N

N∑
i=1

xi

)

= − 1

N2
Var

(
N∑
i=1

xi

)

= − 1

N2

N∑
i=1

Var(xi)

= − 1

N
Var(x)

= − 1

N
σ2

So the MLE of the variance of a Gaussian is biased (slightly below the actual variance).

8.2.4. Example: Regression

8.3. Model Selection and Occam’s Razor

• The essence of Occams’s Razor is: Always choose the simplest model that matches the data. Simplest
means the model with the smallest complexity (e.g. the polynomial with the lowest degree).
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• Model selection is a complex task.

• The whole data set has to be split into multiple data sets to avoid overfitting and to get better estimation
for the prediction error:
1. Training Set Fit parameters.
2. Validation Set Choose the model class or single parameters.
3. Test Set Estimate the prediction error of the trained model.

8.3.1. Cross Validation

• During cross validation, the whole data set D is split intoK data sets Dκ andK−1 sets are used training
and one data set is used for validation.

• This yields the following computations (whereMj is a model):

θk(Mj) = arg min
θ∈Mj

∑
κ ̸= k

∑
(xi,yi)∈Dκ

Lfθ(xi, yi)

Lk(Mj) =
∑

(xi,yi)∈Dκ

Lfθ(xi, yi)

• There exist multiple variations of cross validation:
– Exhaustive cross validation Try all partitioning possibilities.

=⇒ Computationally expensive.
– Bootstrap cross validation Randomly sample non-overlapping training/validation sets.

8.3.2. K-Fold Cross Validation

• Randomly partition the data set into K data sets, select one for validation and repeat this K times, each
with a different validation set.

• Compute the validation loss in each iteration and choose the model with the lowest average validation
loss:

M∗ = argmin
M

1

K

K∑
k=1

Lk(M)

• Lk(M) is computed as defined in 8.3.1.

• Leave-one-out cross-validation (LOOCV): K is set to K = N − 1, which yields a validation set size of 1.

8.3.3. Machine Learning Cycle

Figure 8.1 shows the general cycle of machine learning that can/must be repeated multiple times in order to
get a good model.
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Algorithm Prediction
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Figure 8.1.: Machine Learning Cycle

8.4. Wrap-Up

• Bias and variance of an estimator

• Bias-Variance tradeoff

• MVUE and BLUE

• Difference between unbiased and biased estimators

• Mimic test data evaluation using cross-validation
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9. Regression

Regression is about to learn a mapping f : I → O, y = f(x; θ) from input I to output O with the parameters
θ ∈ Θ. The parameters are what needs to be “learned” and f represents the model that is trained. In regression,
in output space O is continuous, e.g. O = R or O = R2 etc.

In general, the training data is given as pairs of in- and output values xi, yi. This chapter will only cover the
case yi ∈ R, but in general yi can have multiple dimensions. Let X := {x1, · · · ,xn } and Y := { y1, · · · , yn }
be the sets of the training input/output values.
Note: All of the following examples are based in the true function f(x) = σ(x) sin(x) with the sigmoid

function σ(x) and 50 sampled data points with a noise of N (0, 1). The true function is shown in figure 9.1.

9.1. Linear Regression

In linear regression, the function f to train is a linear function (called regressor)

y = xTw + w0

9.1.1. Least Squares Regression

• The linear yi = xT
i w + w0 gives n linear equation, one for each training data pair.

• With x̂i :=

[
xi

1

]
and ŵ :=

[
w
w0

]
the regressor can be written as yi = x̂iŵ.

• Using the matrices X̂ =
[
x̂i, · · · , x̂n

] and the vector y = [ y1, · · · , yn ] the complete problem can be
summarized into one matrix-vector equation:

X̂T ŵ = y

This is an overdetermined linear equation system that therefore will most likely not yield a solution. So instead
use least squares optimization and solve the (unbounded) optimization problem

ŵ = argmin
w

∥∥X̂w − y
∥∥2

which yields the solution
ŵ =

(
X̂X̂T

)−1
X̂y

using the left pseudo-inverse of X̂.
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Figure 9.1.: Regression: True Function
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Problems

• LSR depends on the inversion of a D ×D matrix, where D is the dimension.

• Naive matrix version takes O(D3) and is numerically instable.

• As D grows, other methods like gradient descent have to be taken into account.

• LSR indirectly assumes that the targets are Gaussians!

Regularized Least Squares Regression To regularize LSR, a regularization term λ can be added to the
estimator, yielding the following minimization objective:

ŵ = argmin
w

1

2

∥∥X̂Tw − y
∥∥2 + λ

2
∥w∥2

Solving this yields the following solution:

ŵ =
(
X̂X̂T + λI

)−1
X̂y

Warning: The regularization term assumes that both
the noise and the targets are Gaussian distributed!

9.2. Generalized Linear Regression

Generalized linear regression and can learn arbitrary polynomials that are nonlinear w.r.t. to input variables x.
The regressor has the following general form:

y(x) = wTϕ(x) =
M∑
i=0

wiϕi(x)

with the basis functions ϕi(·). Also, ϕ0(x) = 1 is assumed for every x.

• With basis functions like ϕ(x) =
[
1 x x2 x3

], the regressor is nonlinear w.r.t. x.

• But the model is still linear w.r.t. to the parameters w, so the learning methods for linear regression can
still be applied for polynomial regression (with small adjustments).

• Note that higher polynomials can easily lead to massive overfitting!

Assuming a Gaussian distribution and using y =

y1...
yn

 and Φ =
[
ϕ
(
x1

)
· · · ϕ

(
xn

)], the least squares

solution for generalized linear regression is

ŵ =
(
ΦΦT

)−1
Φy

79



4 2 0 2 4 6
300

200

100

0

100

200

300
Least Squares Regression

(x) sin(x)
LSR (d = 4)
LSR (d = 7)
LSR (d = 20)
Samples

Figure 9.2.: Regression: Least Squares, Underfitting

Example This example used a nonlinear polynomial transformation ϕd(·) that contains all polynomials up to
the d-th degree, i.e. for d = 2:

ϕ(x) =

 1
x
x2


Figure 9.2 shows the results from three different polynomial degrees:

• d = 4 which underfits,

• d = 7 which fits just right and

• d = 20 which massively overfits.

9.3. Maximum Likelihood Approach

9.3.1. Probabilistic Regression

For probabilistic regression, two assumptions have to be made:
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1. The target function values are generated by adding noise ϵ to the function estimate:

y = f(x,w) + ϵ

2. The noise is a random variable that is Gaussian distributed (with the precision β and variance β−1):

ϵ ∼ N
(
0, β−1

)
=⇒ p

(
y |x,w, β

)
= N

(
y | f

(
x,w

)
, β−1

)
So y is now a random variable that is Gaussian distributed with the underlying probability distribution
p
(
y |x,w, β

)!
9.3.2. Maximum Likelihood Regression

Probabilistic regression gives the possibility to use well-known procedures like MLE for regression, called
maximum likelihood regression.

Conditional Likelihood With the input data points X =
[
x1, · · · ,xn

]
∈ RD×n (dimensions D) and the

output data points Y = [ y1, · · · , yn ], the conditional likelihood can be formulated as (with the general linear
regressor wTϕ

(
x
)):

p
(
y |X,w, β

) i.i.d.
=

n∏
i=1

N
(
yi | f

(
xi,w

)
, β−1

) linear model
=

n∏
i=1

N
(
yi |wTϕ

(
xi

)
, β−1

)
The maximum likelihood is approach is to maximize the conditional w.r.t. w and β.

Maximization Using y =

y1...
yn

, w =

w1
...
wn

 and Φ =
[
ϕ
(
x1

)
· · · ϕ

(
xn

)], w and β can be estimated with

the standard ML-estimation (take the derivative of the log-likelihood, set it to zero and solve for w or β,
respectively). This yields the following estimators:

wML =
(
ΦΦT

)−1
Φy

β−1
ML =

1

n

n∑
i=1

(
yi −wT

MLϕ
(
xi

))2
Properties

• Maximum likelihood yields the same solution as squared errors, so LSR indirectly assumes that the
targets are Gaussian distributed (not distribution free).

• But MLR can also estimate β, identifying how certain the estimation is about the result (bigger β →
more certain as the variance β−1 gets less).
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Figure 9.3.: Regression: Maximum Likelihood, Underfitting

Example This example used a nonlinear polynomial transformation ϕd(·) that contains all polynomials up to
the d-th degree, i.e. for d = 2:

ϕ(x) =

 1
x
x2


The following figures show the results for maximum likelihood regression, together with the standard deviation
estimated with β−1

ML:
• Figure 9.3 used d = 4 which slightly underfits,
• Figure 9.4 used d = 7 which seems to fit very good and finally
• Figure 9.5 used d = 20 which overfits.

Of course the estimation for the curve itself is the same as with least squares, as the equation for computing it
is identical.

9.3.3. Loss Functions

• MLR yields a probability distribution p
(
y |x,w, β

) for the function value y.
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Figure 9.4.: Regression: Maximum Likelihood, Just Right
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Figure 9.5.: Regression: Maximum Likelihood, Overfitting
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• To actually estimate the function value yt for a new data points xt, a loss function

L : R×R→ R+ :
(
yt, f

(
xt

))
7→ L

(
yt, f

(
xt

))
is needed.

• Then, the expected loss has to be minimized (w.r.t. f(x)):

Ex,y∼p(x,y)(L) =

∫∫
L
(
y, f
(
x
))

p
(
x, y

)
dxdy

The simplest case is the squared loss function L
(
y, f(x)

)
=
(
y − f(x)

)2 which yields the solution

f(x) = Ey∼p(y |x)(y) = E(y |x)

So, under the squared error, the optimal regression function is just the mean of the posterior distribution p(y |x)
(also called mean prediction).

For the generalized linear regression function, this is just the value of the function:

f(x) = E(y |x) = wTϕ(x)

9.4. Bayesian Linear Regression

• In Bayesian linear regression, a prior is placed on the parameters w to tame the instabilities and to
reduce overfitting.

• As in all Bayesian interpretations, it is based on Bayes rule.
• Also, Bayesian linear regression no more produces a single value for w, but rather a probability distribu-

tion over the parameters.
• Idea: Put a Gaussian prior on w with a spherical covariance matrix with precision α (variance α−1)

w ∼ p(w |α) = N
(
w |0, α−1I

)
the mean can be set to a different value, but zero makes the following computations easier.

• Using this prior, the posterior distribution becomes:
p(w |X, y, α, β) ∝ p(y |X,w, β) p(w |α) = p(y |X,w, β) N

(
w |0, α−1I

)
9.4.1. Maximum A-Posteriori (MAP)

Using maximum a-posteriori estimation (take the derivative of the log-posteriori, set it to zero and solve for
the parameter of interest), w can be estimated as

wMAP =

(
ΦΦT +

α

β
I

)−1

Φy

The prior has the effect that it regularizes the pseudo-inverse via the parameter α
β . This is also called ridge

regression.
Sometimes, only the ridge parameter λ = α

β is given, as known of the regularized least squares regression.
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9.4.2. Full Bayesian Regression

• The actual value of w is not really a point of interest, as the goal is to predict a function value rather
than a parameter value.

• The idea of full Bayesian regression is to remove w by marginalizing over it:

p
(
yt |xt, X,y

)
=

∫
p
(
yt,w |xt, X,y

)
dw =

∫
p
(
yt |w,xt

)︸ ︷︷ ︸
regression model

p
(
w |X,y

)︸ ︷︷ ︸
posterior

dw

where yt is the predicted value, xt is the test input, X are the training data points and y are the training
function values.

• The marginalized probability distribution p
(
yt |xt, X,y

) is called the predictive distribution.

• For Gaussian distributions, this is solvable in a closed form, leading to Gaussian processes.

Gaussians For Gaussians, the predictive distribution is given as

p
(
yt |xt, X,y

)
= N

(
yt |µ

(
xt

)
, σ2
(
xt

))
with the parameters

µ
(
xt

)
= ϕT

(
xt

)(α

β
I +ΦΦT

)−1

ΦTy

σ2
(
xt

)
=

1

β
ϕT
(
xt

) (
αI + βΦΦT

)−1
ϕ
(
xt

)
So the mean and variance are state dependent!
This leads to Gaussian processes (see section 9.6) getting more certain about the estimate as more data

points are taken into account.

Example This example used a nonlinear polynomial transformation ϕd(·) that contains all polynomials up to
the d-th degree, i.e. for d = 2:

ϕ(x) =

 1
x
x2


The following figures show the results for full Bayesian regression with the noise parameter α−1 = 1 and the
prior β0.01, together with the standard deviation.

• Figure 9.6 used n = 2 samples does not fit the function very well and has a very high variance,

• Figure 9.7 used n = 8 samples, fitting the function better with still a high variance and

• Figure 9.8 used n = 20 (all) samples fitting the function really well with high variance on both sides.

This is expected as regression gets more accurate the more data points are used. Note that in this example,
the polynomial degree stayed fixed!
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Figure 9.6.: Regression: Full Bayesian Regression (2 Samples)
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Figure 9.7.: Regression: Full Bayesian Regression (8 Samples)
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Figure 9.8.: Regression: Full Bayesian Regression (All Samples)
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9.5. Kernel Regression

A kernel is an inner product of feature vectors (or feature transformations)

K(x,y) = ϕ(x)Tϕ(y)

which is symmetric (K(x,y) = K(y,x)).
Example kernels:
• Stationary kernels:

K(x,y) = K̂(x− y)

• Linear kernel: K(x,y) = xTy

• Homogeneous kernels:
K(x,y) = K̂

(
|x− y|

)
Working with kernels instead of handcrafted features has a lot of advantages:
• Can work entirely in the features space with the help of kernels.
• Regression can even consider infinite feature spaces (e.g. with the Gaussian RBF kernel).
• Many algorithms can be derived from the dual representation.
• Many old problems of RBFs (how many kernels, which metric, etc.) can be solved in a principled way.

But: Kernel regression requires the inversion of a N ×N matrix, where N is the number of samples. This can
be very costly!

Example Figure 9.9 shows kernel regression with an RBF kernel with the bandwidth σ2 = 0.01, performing
not so good. Figure 9.10 also uses an RBF kernel but with the bandwidth σ2 = 1, performing much better.
Both are using a ridge parameter λ0.01.

9.5.1. Dual Representation of Regression

The primal formulation for (regularized) regression is

J(w) =
1

2

N∑
i=1

(
wTϕ(xi)− yi

)2
+

λ

2
wTw

taking the gradient w.r.t. w, setting it to zero and solving for w:

∂J(w)

∂w
=

N∑
i=1

(
wTϕ(xi)− yi

)
ϕ(xi) + λw

!
= 0

=⇒ w = − 1

λ

N∑
i=1

(
wTϕ(xi)− yi

)
ϕ(xi) =

N∑
i=1

aiϕ(xi) = ΦTa

with Φ =
[
ϕ(x1)

T · · · ϕ(xN )T
]
∈ RN×D. Thus, w is a linear combination of the features ϕ(xi)! The dual

representation then focuses on solving for a, not w.
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Figure 9.9.: Regression: Kernel Regression (RBF, σ2 = 0.01)
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Figure 9.10.: Regression: Kernel Regression (RBF, σ2 = 1)
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Inserting this into the cost function yields the dual formulation:

J(w) =
1

2

N∑
i=1

(
wTϕ(xi)− yi

)2
+

λ

2
wTw

=⇒ J̃(w) =
1

2

N∑
i=1

(
aTΦϕ(xi)− yi

)2
+

λ

2
aTΦΦTa

=
1

2

N∑
i=1

(
aTΦϕ(xi)ϕ(xi)

TΦTa− 2aTΦϕ(xi)yi + y2i
)
+

λ

2
aTΦΦTa

=
1

2

N∑
i=1

aTΦϕ(xi)ϕ(xi)
TΦTa−

N∑
i=1

aTΦϕ(xi)yi +
1

2

N∑
i=1

y2i +
λ

2
aTΦΦTa

=
1

2
aTΦΦTΦΦTa− aTΦΦTy +

1

2
yTy +

λ

2
aTΦΦTa

Let K̂ := ΦΦT be the Gram matrix with K̂ := K(xi,xj):

=
1

2
aT K̂K̂a− aT K̂y +

1

2
yTy +

λ

2
aT K̂a

Now solve the dual problem for a by taking the derivative and set it to zero:

L̃(a) =
1

2
aT K̂K̂a− aT K̂y +

1

2
yTy +

λ

2
aT K̂a

=⇒ ∂L̃(a)

∂a
= K̂K̂a− K̂y +

λ

2
K̂a = K̂(K̂a− y + λy)

!
= 0

=⇒ a = (K̂ + λI)−1y

As of the definition of the Gram matrix K̂, is is positive semi-definite, thus K̂−1 exists.
A prediction can then be computed as

y(x) = wTϕ(x) + b = aTΦϕ(x) = k̂(x)T (K̂ + λI)−1y

with k̂(x) =
[
K(x,x1) · · · K(x,xN )

]T .
So all computations can be expressed in terms of the kernel function!

9.5.2. Useful Kernels

Polynomial Kernels of Degree d
K(x,y) = (xTy)d

Gaussian Kernel Also known as Radial Basis Function (RBF).

K(x,y) = exp

{
− ∥x− y∥2

2σ2

}
This kernel has a feature space with infinity number of radial functions!

The parameter σ2 is the bandwidth of the kernel. This is basically the inverse of the “variance” of the kernel
and a measure of similarity. If it is small, far away points will be considered similar while if it is big, nearby
points will be considered more similar.
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9.6. Gaussian Processes Regression

A Gaussian process (GP) is a probability distribution over functions y(x) such that any finite set of function
values evaluates at some input is jointly Gaussian distributed. A Gaussian process is fully specified by the 2nd
order statistics (mean and covariance).

• The prior mean function is the expected function before observing any data,

• The covariance function encodes some structural assumptions (e.g. smoothness) (e.g. multivariate
Gaussian kernel).

Thus, a GP is fully defined by

E(y) = E(Φw) = ΦE(w) = 0

E
(
y(x1)y(xj)

)
= K(x,y)

9.6.1. Regression

Assume the generative model to have some noise ϵ that is Gaussian distributed with ϵ ∼ N (0, β−1):

ti = y(xi) + ϵ

This makes y a random variable that is also Gaussian distributed with

p(ti | yi) = N (ti | yi, β−1)

The kernel function that determines K is typically chosen to express the property that, for similar points xi

and xj , the corresponding values y(xi) and y(xj) will be more strongly correlated that for dissimilar points.
The definition of similarity highly depends on the application.

9.6.2. Function Value Prediction

• Prior over functions (GP): p(y)

• Likelihood (measurement/noise model): p(t | y)

• Posterior over function via Bias theorem:

p(y | t) = p(t | y) p(y)
p(t)

Given a training set tn =
[
t1 · · · tn

]T with corresponding x1, · · · ,xn, the goal is to predict a new tn+1

for xn+1.
Approach: Evaluate the predictive distribution

p(tn+1 |xn+1, t1:n, x1:n)

Remember that GP assumes that p(t1, · · · , tn, tn+1) is jointly Gaussian distributed, so the predictive distribution
is also Gaussian distributed.
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Assume that x is Gaussian distributed and it can be partitioned into two disjoint subsets xa and xb, the
distribution can be rewritten in term of the mean and the covariance matrix of xa and xb:

p(x) = N (x |µ,Σ)

x =

[
xa

xb

]
µ =

[
µa

µb

]
Σ =

[
Σaa Σab

Σba Σbb

]
The conditional distribution is also Gaussian:

p(xa |xb) = N (xa |µa | b,Σa | b)

µa | b = µa +ΣabΣ
−1
bb (xb − µb)

Σa | b = Σaa − ΣabΣ
−1
bb Σba

Thus, the predictive distribution can be expressed as:

p(tn+1) = N (tn+1 | 0, Cn+1)

Cn+1 =

[
Cn k
K c

]

k =

K(x1,xn+1)
...

K(xn,xn+1)


c = K(xn+1,xn+1) + β−1

Yielding the following prediction equations:

m(xn+1) = KTC−1
N t

σ2(xn+1) = c−KTC−1
N K

This gives an estimation for the function value as well as gauges the uncertainty about that estimate!

Example

9.6.3. Conclusion

• The computational complexity for building the model is O(N3) and for predicting one function value it
is O(N2) (for the variance).

• The key advantage of GPR is that it is non-parametric and probabilistic.

• Naive implementations can deal with 10 000 to 20 000 data points, while advanced methods (e.g. sparse
GPs) can deal with far more than 50 000 data points.

• Hyperparameter (parameters for the kernel/covariance function) optimization is really important, e.g.
for the squared-exponential kernel:

K(x,y) = σ2
f exp

{
− (x− x)2

2l2

}
+ σ2

nδij
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where σ2
f is the signal variance, l is the length-scale and σ2

n is the noise variance.

• Gaussian processes are Bayesian approaches to regression with (possible infinity) feature spaces.

• The resulting prediction equations are straightforward obtained in a closed form because of Gaussian
properties.

• The hyperparameter optimization is more complex and expensive.

• While it is very computationally expensive, it is one of the most used approaches to statistical learning
for regression.

9.7. Wrap-Up

• Formulation of a linear regression problem

• Different methods to perform linear regression (least squares, maximum likelihood, Bayesian)

• Derivation of the equations for different methods

• Influence of a prior distribution over the parameters to overfitting

• Kernels, construction and benifits

• Derivation of the dual formulation and pros/cons

• Gaussian processes and made assumptions

• GP closed form

• Regression with GPs yields mean and variance

• Kernels to not scale with data
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10. Classification

In classification, the goal is to find a mapping f : I → O that maps the input space I onto a discrete (and
mostly finite) output space O, called classes.

As seen in Bayesian decision theory, this breaks down into finding the a-posteriori probability (posterior) of
the class Ck given an observation (feature) x

p(Ck |x) =
p(x |Ck) p(Ck)

p(x)
=

p(x |Ck) p(Ck)∑
j p(x |Cj) p(Cj)

and then device for class k iff p(Ck |x) > p(Cl |x) for all l ̸= k. A classifier that obeys this rule is called a
Bayes optimal classifier. See chapter 5 for more details.
Note: All of the following examples use a dataset of 250 data points per class that were generated by a

mixture of two-dimensional multivariate Gaussians, plotted in figure 10.1 (for linearly separable data).

10.1. Generative vs. Discriminative

There are essentially two different views to solve the classification problem:

Generative Model the class-condition distributions p(x |Ck) and use Bayes rule and some prior to
compute the class posterior.

Discriminative Model the class posterior p(Ck |x) directly, e.g. by separating the data points using a
function. These types of models only care about getting the classification right and
not whether the class-conditional fits well.

10.2. Discriminant Functions

• Discriminant functions model the decision boundary and directly without modeling the densities while
still minimizing the error probability.

• In comparison with generative models, discriminative models have the advantage that they are not
so sensitive to outliers which the class-conditional-based have to consider when estimating the class-
condition distribution, even if they do not matter at the end.

– This reduces the complexity of the overall model once the model has learned where to place the
decision boundary.

– This shall not mean that such classifiers are inherently superior to probabilistic ones (e.g. they
cannot take priors into account)!

• For two classes, decide for class C1 iff y1(x) > y2(x). This is equivalent to defining a function y(x) =
y1(x)− y2(x) and decide for class C1 iff y(x) > 0.
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Figure 10.1.: Classification: Example Data (Linear Separable)
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• Some discriminant functions are directly given from a Bayes classifier:

yk(x) = p(Ck |x)
yk(x) = p(x |Ck) p(Ck)

yk(x) = ln
(
p(x |Ck)

)
+ ln

(
p(Ck)

)
The logarithm in the last step is applicable because ln(x) is a strictly rising function and, for distributions
of the exponential family, drastically reduces the computational overhead and thus reduces numeric
instabilities.

10.2.1. Multiple Classes

• Normal multi-class classifiers based on binary (two-class) decisions may lead to ambiguities (“regions of
uncertainty”).

• A better solution is to have multiple discriminant functions y1, · · · , yk and choose Ck iff yk(x) > yl(x)
for all l ̸= k.

• Using this decision rule and linear discriminant functions, the decision regions are connected and convex
which removes the “regions of uncertainty” and the ambiguities.

10.2.2. Linear Discriminant Functions

• In linear discriminant functions, the decision boundaries are hyperplanes defined by a linear function

y(x) = wTx+ w0

where w is the normal vector and w0 is the offset.

Linear Separability

• Not all data points may be separable by a linear function (e.g. if the data points overlap).
• Figure 10.2 shows two cases where the first is linearly separable and the second is not.

10.3. Fisher Discriminant Analysis

10.3.1. Least Squares Classification

• In least squares classification, the discriminant function shall output the values y(x) = +1 or y(x) = −1,
indicating that x belongs to class C1 or class C2, respectively.

• With training data inputs X = {x1 ∈ Rd, · · · ,xn } and training outputs Y = { y1 ∈ {+1,−1 }, · · · , yn },
this yields an overdetermined equation system

yi = wTxi + w0

for all data pairs (xi, yi).
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Figure 10.2.: Linear Separability

• The formula can be rewritten in matrix-vector notation yielding just one formula to express everything:

x̂i :=
[
xi 1

]T
ŵ :=

[
w w0

]T
X̂ :=

[
x̂1 · · · x̂n

]
∈ Rd×n

y :=
[
y1 · · · yn

]T
=⇒ y = X̂T ŵ

• This is an overdetermined equation system and thus not solvable in general, so instead of solving it the
squared error of the equation system is minimized:

ŵ∗ = argmin
ŵ
∥X̂T ŵ − y∥2

= argmin
ŵ

(
X̂T ŵ − y

)T (
X̂T ŵ − y

)
= argmin

ŵ
ŵT X̂X̂T ŵ − 2yT X̂T ŵ + yTy

Take the derivative w.r.t. ŵ and set it to zero:

0
!
=

∂

∂ŵ

(
ŵT X̂X̂T ŵ − 2yT X̂T ŵ + yTy

)
⇐⇒ 0 = X̂X̂T ŵ + X̂T X̂ŵ − 2yT X̂T

• This yields the following best-effort solution for ŵ∗ by utilizing the left pseudo-inverse of X̂:

ŵ∗ =
(
X̂X̂T

)−1
X̂y
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Figure 10.3.: Classification: Least Squares

Problems

• The least-squares solution for discriminative classification is very sensitive to outliers and breaks down
even if there are only a few. This is due to the squared error which treats outliers more important than
small errors.

• Calculating the matrix inverse is computationally expensive (but can be rewritten as solving a linear
equation system).

Example Figure 10.3 shows the result from applying least squares regression to the sample data. As the
data is linearly separable, there is no misclassification.

10.3.2. Fishers’ Linear Discriminant

• Idea: Find a linear projection of the data and classify the projected values on this line.

• Same as for linear discriminant functions, check against a threshold:

wTx+ w0 ≥ 0
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First Attempt: Maximize the Distance Take the two means

m1 =
1

|C1|
∑
i∈C1

xi m2 =
1

|C2|
∑
i∈C2

xi

with the projections m1 = wTm1 and m2 = wTm2 and maximize the distance (m1 −m2)
2. Here rises the

problem that the distance grows unbounded withw, so fix the norm ofw to ∥w∥ = 1. This yields the following
optimization problem:

argmax
w

J(w) = (wTm1 −wTm2)
2

s.t. ∥w∥2 = 1

By performing Lagrangian optimization, the solution is

w =
m1 −m2

∥m1 −m2∥

This parameter causes a large class overlap, so do more: Maximize the mean distance while minimizing the
variance of each class.

Final Attempt: Maximize the Distance, Minimize the Variance Let s21 and s22 be in within-class variances:

s21 =
∑
i∈C1

(wTxi −m1)
2 s22 =

∑
i∈C2

(wTx−m2)
2

with m1 = wTm1 and m2 = wTm2. The Fisher criterion now formulates the optimization problem as:

argmax
w

J(w) =
(m1 −m2)

2

s21 + s22

The nominator and the denominator can be rewritten to make the criterion easier to optimize:

(m1 −m2)
2 = (wTm1 −wTm2)

2

=
(
wT (m1 −m2)

)2
= wT (m1 −m2)(m1 −m2)

T︸ ︷︷ ︸
SB :=︸ ︷︷ ︸

between-class covariance

w

s21 + s22 =
∑
i∈C1

(wTxi −m1)
2 +

∑
i∈C2

(wTx−m2)
2

s21 + s22 =
∑
i∈C1

(
wT (xi −m1)

)2
+
∑
i∈C2

(
wT (x−m2)

)2
s21 + s22 =

∑
i∈C1

wT (xi −m1)(xi −m1)
Tw +

∑
i∈C2

wT (xi −m2)(xi −m2)
Tw

s21 + s22 = wT

[ ∑
i∈C1

(xi −m1)(xi −m1)
T +

∑
i∈C2

(xi −m2)(xi −m2)
T

]
︸ ︷︷ ︸

SW :=︸ ︷︷ ︸
within-class covariance

w
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This way, the cost function can be rewritten:

J(w) =
(m1 −m2)

2

s21 + s22
=

wTSBw

wTSWw

Differentiating the cost function w.r.t. w and setting it to zero yields

(wTSBw)SWw = (wTSWw)SBw

As the factory wTSBw and wTSWw are scalars, the vector SWw and SBw are colinear:

SWw ∥SBw

Thus, with SBw = (m1 −m2)(m1 −m2)
Tw it also holds that SBw ∥ (m1 −m2) leading to Fisher’s linear

discriminant:
SWw ∥SBw ∥ (m1 −m2) =⇒ w ∝ S−1

W (m1 −m2)

• Caution: Fisher’s linear discriminant only yields a projection, the threshold w0 is still missing and has to
be found, e.g. by using a Bayes classifier with Gaussian class-conditionals.

• Fisher’s linear discriminant is Bayes optimal iff the class-conditional distributions (likelihoods) are equal
with diagonal covariance.

• It is essentially equivalent to linear discriminant analysis (it is equivalent to a certain case of the least
squares classifier).

• Problem: It is still very sensitive to noise.

10.4. Perceptron Algorithm

The perceptron algorithm tries to find a separating hyperplane, given that the data is linearly separable. It
depends on the following discriminator (called perceptron discriminant function):

y(x) = sign
(
wTx+ b

)
with the sign function

sign : R→ {−1, 0,+1 } : o 7→


−1 iff o < 0

0 iff o = 0

+1 iff o > 0

Algorithm7 shows the perceptron algorithm for a datasetD =
{
(x, y) |x ∈ Rd, y ∈ {−1,+1 }

} for n iterations.
The initialization vectors can be chosen differently.

Example Figure 10.4 shows the result of the perceptron algorithm after convergence (took 7 iterations).
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Algorithm 7: Perceptron Algorithm
1 w(1) ← 1

2 b(1) ← 0
3 for k = 1, · · · , n do
4 w(k+1) ← w(k)

5 b(k+1) ← b(k)

6 for ∀(xi, yi) ∈ D do
7 if sign

(
wTx+ b

)
̸= y then

8 if y = −1 then
9 w(k+1) ← w(k+1) − x

10 b(k+1) ← b(k+1) − 1

11 if y = +1 then
12 w(k+1) ← w(k+1) + x

13 b(k+1) ← b(k+1) + 1
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Class A (Pred.)
Class B (Pred.)
Class A
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Figure 10.4.: Classification: Perceptron (7 Iterations)
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10.4.1. Intuition

10.4.2. Linear Separability

• The perceptron algorithm is not able to handle non linearly separable data, e.g. the XOR function.

• This halted research for decades.

• Simple solution: Transform the input space nonlinearly to make it linearly separable.

• Insight: Create features and learn from them, not from the raw data! This automatically done by neural
networks.

10.5. Probabilistic Discriminative Models

The class posterior can be expressed using Bayes rule and the sigmoid function (for two classes):

p(C1 |x) =
p(x |C1) p(C1)

p(x)
=

p(x |C1) p(C1)

p(x |C1) p(C1) + p(x |C2) p(C2)
=

1

1 + p(x |C1) p(C1)
p(x |C2) p(C2)

= σ(a)

for a = ln p(x |C1) p(C1)
p(x |C2) p(C2)

.

10.5.1. Logistic Regression

• In logistic regression, it is assumed that a is given by a discriminant function a = wTx + w0, so the
challenge is to find w and w0 to model the class posterior the best.

• This is an appropriate assumption if:
– The class conditionals are Gaussians with equal covariances.
– But also for a other distributions.
– There must be some independence of the form of the class-conditionals.

• Logistic regression works by maximizing the likelihood p(Y |X,w, w0) (where yi is 0 iff xi ∈ C1 and is
1 iff xi ∈ C2), assuming the data is drawn i.i.d.:

p(Y |X,w, w0) =

N∏
i=1

p(yi |xi,w, w0)

=
N∏
i=1

p(C1 |xi,w, w0)
1−yi p(C2 |xi,w, w0)

yi

=
N∏
i=1

σ(wTxi + w0)
1−yi (1− σ(wTxi + w0))

yi

• The key idea is to now apply the logarithm and do gradient descent, for a derivation see Bishop 4.3.

• More robust classifiers can be retrieved by incorporating priors and taking a Bayesian approach.
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10.6. Wrap-Up

• Bayes optimal classifier

• Discriminant functions

• Formalization (intuitively and mathematically) of classification as linearly separable

• Computation of the least squares solution for classification and its failure

• Fisher’s linear discriminant and difference to least squares

• Perceptron and its failure for XOR and how to overcome it

• Difference between generative and discriminative models

• Logistic regression
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11. Linear Dimensionality Reduction

In this chapter, linear models are implied for simplicity, if not stated otherwise.

• Dimensionality reduction is part of the unsupervised learning methods which reduces the dimension of
the data.

• One possible application is the visualization of the data.

• Motivation from least squares regression: LSR requires the inversion of a d × d matrix, where d is
the dimension. If it is possible to find a new dnew ≪ d which represents the data well enough, the
computation cost can be reduced while not loosing precision.

• The key problem is to find representations (especially transformations) of the data into a lower-
dimensional subspace, that capture the “essence” of the data.

• More formally: For every original data point xn ∈ RM , find a low-dimensional representation an ∈ RD

with D ≪M . This is a mapping f : RM → RD : xn 7→ an.

• For simplicity, restrict this mapping function to be linear with a matrix B ∈ RD×M :

an = Bxn

11.1. Introduction

Linear Combinations

• A vector can always be written as a linear combination

x =

M∑
i=1

aiui

where uT
i uj = δij . Thus, the ui build an orthonormal basis of the feature space.

• By rewriting the linear combination, ai can be expressed as a projection ai = uT
i x:
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x =
M∑
i=1

aiui = ajuj +
M∑
i=1
i ̸= j

aiui

⇐⇒ ajuj = x−
M∑
i=1
i ̸= j

aiui

⇐⇒ aj = uT
j x−

M∑
i=1
i ̸= j

ai uT
j ui︸ ︷︷ ︸

= δji =
j ̸= i

0

⇐⇒ aj = uT
j x

• The linear combination can be decomposed as

xn =
D∑
i=1

aiui +
M∑

j=D+1

bjuj︸ ︷︷ ︸
Error

≈ x̃

with the reconstructed data x̃, yielding the following optimization problem (minimizing the mean
squared error over the training data):

u1, · · · ,uD = arg min
u1,··· ,uD

E(u1, · · · ,uD) = arg min
u1,··· ,uD

N∑
n=1

∥xn − x̃n∥2

Minimizing the Error

• The error can be rewritten (assuming a single basis vector to find the first principal direction):

E(u) =

N∑
n=1

∥xn − x̃n∥2

=
N∑

n=1

∥xn − (uTxn)u∥2

=
N∑

n=1

∥xn∥2 − 2(uTxn)2 + (uTxn)2 uTu

=
N∑

n=1

∥xn∥2 − (uTxn)2

=
N∑

n=1

∥xn∥2 − a2n

• So minimizing the error is equivalent to maximizing the variance of the projection (assuming a zero
mean on the data, this can be achieved by subtracting the mean from every data point xn − x̄).

• Thus, the goal changes to finding the axis with the largest variance.
• The resulting axis are orthogonal and decorrelate the data (in the coordinate frame of the new axis, the

data is uncorrelated). This only works for Gaussians!
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11.2. Principal Component Analysis

• The goal of principal component analysis is to find the so-called principal directions and the variance of
the data along each principal direction.

• In the following, λi is the marginal variance along the principal direction ui.
• The first principal direction u1 is the direction along the variance of the data is maximal (C is the

covariance matrix):
u1 = argmax

u
uTCu

• The second principal direction maximizes the variance of the data in the orthogonal complement of the
first principal direction.

11.2.1. Derivation

Let X =
[
x2 · · · xn

]
∈ RM×N be a matrix of N vectors in a M -dimensional input space. Let u ∈ RM be a

unit vector in the input space. The projection of the vector xj onto the vector u can be computed as:

aj = uTxj =

M∑
i=1

Xijui

The goal is to find a direction u that maximizes the variance of the projections of all input vectors.

Variance of the Projection The variance of the projection can be computed as (with µi =
1
N

∑N
j=1Xij):

ā =
1

N

N∑
j=1

aj =
1

N

N∑
j=1

M∑
i=1

Xijui =
M∑
i=1

uiµi

σ2 =
1

N

N∑
j=1

(aj − ā)2 =
1

N

N∑
j=1

(
M∑
i=1

uiXij −
M∑
i=1

uiµi

)2

= uTCu

Maximizing the Variance The variance has to be maximized with the constraint ∥u∥ = 1:
max
u

J(u) = uTCu

s.t. ∥u∥ = 1

The Lagrangian formulation

L(u, λ) = uTCu− λ

M∑
k=1

(
u2k − 1

)
=

M∑
i=1

M∑
j=1

uiCijuj − λ

M∑
k=1

(
u2k − 1

)
yields the solution

Cu = λu

This is the Eigenvalue-Eigenvector equation! So solving for the eigenvalues and eigenvectors gives the
following results:

• The larges eigenvalue gives the maximal variance and
• the corresponding eigenvector gives the direction with the maximal variance.
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11.2.2. Conclusion

As the covariance matrix C is real, symmetric and positive-definite, the eigenvalues and -vectors can be
grouped in an Eigendecomposition:

C = UΛUT =
[
u1 · · · uM

] λ1

. . .
λM


u

T
1...

uT
M


• If λk ≈ 0 for k > D for some D ≪M , the subset of the first D eigenvectors (with the greatest value)

can be used as a basis to approximate the data vectors.
• The eigenvalues λk then represent the explained variance in that direction.
• This representation has the minimal mean squared error of all linear representations of dimension D.
• The following steps have to be done to represent the data in a lower space (and reconstruct it):

1. Center the data around the mean (compute it and subtract it from all data points). May standardize
the variance (compute the variance and divide the normalized data by it).

2. Compute the covariance matrix, decompose it into eigenvalues and -vectors and find the first D
eigenvalues with the highest corresponding eigenvalues. As the covariance matrix must be positive
semi-definite, all eigenvalues are λi ≥ 0.

3. Transform the data into a lower dimensional space (with B =
[
u1 · · · uD

]):
an = BT

(
xn − x̄

)
If the data was standardized, the last term has to be divided by the variance.
4. To reconstruct the data, reverse-apply the formula:

x̃n = x̄+Ban

If the data was standardized, multiply it by the variance.

Example Figure 11.1 shows principal component analysis applied to the iris dataset with the data of flowers.
The explained variance vs. the number of components is shown in figure 11.2

11.3. Choosing the target Dimension

• A larger D leads to a better approximation (with D = M , 100% accuracy as the dimension is not
changed).

• There exist two good possibilities to choose the target dimension:
1. Choose D based on the application performance (choose the smallest D that makes the application

work well enough).
2. Choose D so that the basis captures some fraction of the variance, so choose D so that, for a given

η:
D∑
i=1

λi ≥ η

M∑
i=1

λi
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Figure 11.1.: Principal Component Analysis: Iris Dataset
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11.4. Applications

11.5. Wrap-Up

• Dimensionality reduction and why its needed

• Intuition behind PCA

• Maximization of the variance of the projection

• Relation of PCA to eigenvector and -values
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12. Statistical Learning Theory

• In classical statistical learning, the parameters w are estimated for a fixed model (the learning machine).

• Learning occurs only by optimizing the model parameters. It is assumed that the correct model is known
in advance (except in Bayesian learning).

• Selecting the “correct” features is hard and an overly complex model leads to overfitting.

• The real point of interest is the generalization ability and the corresponding risk.

• In statistical learning theory, these assumptions are not made and the goal is to find an optimal model
from a specified set of models. Optimally means the ability to generalize, i.e. to have the lowest error
probability on all data, not just the test data. It is concerned with the question on how to control the
generalization abilities of a learning machine.

• It aims at a formal description of the generalization ability and the goal is to develop a rigorous theory
as opposed to commonly used heuristics.

• This is a good goal, but the theory itself does not say much about real problems. . .

12.1. Supervised Learning

• The environment is stationary, the data points have an unknown but fixed probability density

xi ∼ pX

• The supervisor returns the intended classification label for every data point x, possibly with some noise ϵ

y = g(x, ϵ)

• The learning machine is represented through a class of functions with parameters w that return an
output y for every input x

y = f(x,w)

• From the view of the learning machine, choose a particular function y = f(x,w) given a set of training
examples {xi, yi }Ni=1. Goal: Approximate the desired output y optimally.

• This optimality can be expressed by a loss function, e.g. quadratic loss

L
(
L, f(x,w)

)
=
(
y − f(x,w)

)2
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12.2. Assessment of Optimality: Risk

The risk for a particular data point can be expressed with a loss function

L
(
y, f(x,w)

)
This yields the empirical risk as the average over all available samples

Remp(w) =
1

N

N∑
i=1

L
(
yi, f(x,w)

)
where N is the number of samples.

In reality, the true risk

R(w) =

∫
L
(
y, f(x)

)
p(x, y) dx dy = Ex,y∼p(x,)

(
L
(
y, f(x,w)

))
is far more interesting, where p(x, y) is the joint probability density of x and y. The risk is the expected error
over all data sets and is the expectation of the generalization error.
Problem: The probability density p(x, y) is fixed, but unknown. So the true risk cannot be computed

directly.

12.2.1. Empirical vs. True Risk

• True Risk
– Advantage: The actual measure for the generalization ability.
– Disadvantage: Depends on p(x, y) which is unknown =⇒ the true risk cannot be computed

directly.
• Empirical Risk

– Disadvantage: No “real” measure for the generalization ability.
– Advantage: Does not depend on p(x, y) and can be computed directly.
– Learning algorithms usually minimize the empirical risk.

• The interest point are the dependencies between the two risks.
• The empirical risk is an approximation for the true risk that works well if the distribution is very

concentrated. It gets very good if there are infinitely many samples.

12.2.2. Convergence Properties

At first assume that the empirical risk converges to the true risk with more samples (inf is the infimum):

lim
N→∞

inf
w

Remp(w) = inf
w

R(w)

Also assume that the convergence has to be uniform:

lim
N→∞

P

(
sup
w

∣∣R(w)−Remp(w)
∣∣ > ϵ

)
= 0
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Intuition: “The learning machine gets better the more data it has.”

If the convergence is uniform P

(
sup
w

∣∣R(w)−Remp(w)
∣∣ > ϵ

)
< p∗ for some p∗ > 0, then with probability

1− p∗ it holds that ∣∣R(wemp)−Remp(wemp)
∣∣ <ϵ∣∣R(w0)−Remp(w0)
∣∣ <ϵ

Hence it holds that
P
(∣∣R(w0)−Remp(wemp)

∣∣ > 2ϵ
)
< p∗

Under the necessary and sufficient condition that the convergence is uniform, minimizing the empirical risk
guarantees the minimization of the true risk in the limit of N →∞.

• Advantages
– Existence of a formal criterion to what can be expected in terms of generalization.
– The necessary and sufficient condition is the uniform convergence.

• Disadvantages
– In reality, the training data is very limited.
– “Taking the limit” with N →∞ is impossible.

12.3. Risk Bound

Idea: Determine an upper risk bound on the true risk based on the empirical risk

R(w) ≤ Remp(w) + ϵ(N, p∗, h)

where N is the number of training samples, p∗ is the probability that the bound is met and h is the learning
power of the learning machine, formally called VC-dimension.

12.3.1. VC-Dimension

• VC stands for Vapnik–Chervonenkis, the developers of the VC-theory.

• Informal definition of the VC-dimension:
– The VC-dimension of a family of functions is the maximum number of samples that can be correctly

classified by a function from that family (independent of the label configuration).
– The VC-dimension is a measure of the capacity (“learning power”) of a classifier.
– The VC-dimension is the number of data points that can be shattered by a function.

• Example: The VC-dimension of linear classifiers (hyperplanes) in Rn is (n+ 1).

• Often (but not always!) the VC-dimension is directly related to the number of parameters.
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12.3.2. Example

For the loss function, the true risk and the empirical risk

L
(
y, f(x,w)

)
=

1

2

∣∣y − f(x,w)
∣∣

R(w) =

∫
1

2

∣∣y − f(x,w)
∣∣ p(x, y) dxdy

Remp(w) =
1

2N

N∑
i=1

∣∣yi − f(xi,w)
∣∣

with probability p∗ it holds that

R(w) ≤ Remp(w) +

√
h
(
ln(2N/h) + 1

)
− ln

(
(1− p∗)/4

)
N

• The upper bound is independent of p(x, y)!
• As the true risk is not computable, but the VC-dimension is known, a bound of the type

R(w) ≤ Remp(w) + ϵ(N, p∗, h)

with a confidence interval ϵ can always be computed.
• However, in practice, this bound is very loose and the true risk may be much lower.

12.4. Structural Risk Minimization

• Given a family of n models fi(xi,wi) with h1 ≤ h2 ≤ · · · ≤ hn.
• Minimize the empirical risk for every model and choose the model that minimizes the risk bound (the

right side of the risk bound equation).
• In general, this is not the same model that minimizes the empirical risk.
• This formally lowers the upper bound on the true risk.
• The result is only sensible if the upper bound in the true risk is a tight bound (which is typically not).

12.5. Wrap-Up

• Statistical learning theory
• Empirical vs. true risk
• Incompleteness of the empirical risk
• VC-Dimension
• Relation between the VC-dimension and the model complexity
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13. Neural Networks

• Selecting the “right” features for a problem is really hard, but the representation of the data matters a
lot.

• Neural networks learn complex data representations by combining simpler ones (features of features).

• The big shifts that lead to neural networks are:
– Too little data→ too much data.
– Linear and convex→ nonlinear and nonconvex.
– Intuitive features→ harder features, key focus on learning.
– “Right number of parameters”→ “always too many”.
– Optimization becomes easier by being deep.

• Neural networks have a long history. . .
– Pre-computational (1888-): Neuron in biology fully isolated by Ramon y Cajal
– Fields Starts (1943-): McCullogh&Pitts Neuron and Networks
– 1st Hype (1957-): Rosenblatt’s Perceptron
– 1st Winter (1969-): Papert/Minsky book perceptron with XOR example (not linear separable)
– 2nd Hype (1986-1994): Rummelthart/Hinton/Williams rediscover backpropagation
– 2nd Winter (1994-): Optimization is really hard, Kernels are better!
– 2007: Rebooted by NIPS workshops
– 3rd Hype (2013-now): Amazing results in computer vision (ImageNet), Natural Language Pro-

cessing, (Deep) Reinforcement Learning, . . .

• Neural networks can be adapted to regression or classification!
– A linear output node gives a linear regression function.
– Using a sigmoid output node gives something similar to logistic regression.
– In either case, by taking the sign of the output, classification can be obtained.
– Typically not maximum likelihood is used for learning but a different learning criterion.

• The actual power of neural networks comes from the extensions for multi-class classification and
multi-layer perceptrons.
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Figure 13.1.: Neural Network: Single-Layer

13.1. Abstraction of a Neuron

• A single neuron can be represented as

y = f
( n∑
i=1

Wixi + b
)
= f(W Tx+ b) = f(Ŵ T x̂)

with the input x̂ =
[
xT 1

]T , parameters and weights Ŵ =
[
W T b

]T and an activation function f .

• Neurons are pooled together in layers of m input and n outputs, where each layer has
– Weight matrix W ∈ Rn×m

– Bias vector b ∈ Rn×1

– Input vector x ∈ Rm×1

– Pre-activation vector z = Wx+ b

– Output vector y = f(z) with f : Rn×1 → Rn×1

13.2. Single-Layer Neural Networks

13.2.1. Logistic Regression

In logistic regression, the class posterior is modeled as

p(C1 |x) = σ(W Tx+ b)

and a solution for W and b is found by maximizing the likelihood p(Y |X,W , b).
This is equivalent to a neural network as shown in figure 13.1 with a sigmoid activation function.

13.2.2. Multi-Class Network

• A single layer network can also have multiple output neurons, yielding multidimensional linear regression.

• Nonlinear extension is straightforward by applying the sigmoid for a logistic output.
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13.2.3. Least-Squares Loss Function

• In supervised learning, N data points X =
[
x1 · · · x1N

] are given.

• For each data point there are c possible target values k ∈ 1, · · · , c: Tk =
[
t1k · · · tNk

].
• The model can compute yk(x

n,W ), yielding the least-squares error/loss function:

E(W )
1

2

N∑
n=1

c∑
k=1

(
yk(x

n,W )− tnk
)2

=
1

2

N∑
n=1

c∑
k=1

(
f

(
d∑

i=1

Wkiϕi(x
n)

)
− tnk

)2

with arbitrary feature transformations ϕi(·).

13.2.4. Learning with Gradient Descent

Assuming the output with a linear activation yk(x
n) =

∑d
i=1Wkiϕi(x

n), the error function ans its derivative
w.r.t. the weights compute as:

E(W ) =

N∑
n=1

1

2

c∑
k=1

(
d∑

i=1

Wkiϕi(x
n)− tnk

)2

=

N∑
n=1

En(W )

∂En(W )

∂Wlj
=

(
d∑

i=1

Wliϕi(x
n)− tnl

)
ϕj(x

n) =
(
yl(x

n)− tnl
)
ϕj(x

n)

Then the weights can be updated using gradient descent:

Wlj ←Wlj − η
∂E(W )

∂Wlj

∣∣∣∣∣
W

∂E(W )

∂Wlj
=

N∑
n=1

∂En(W )

∂Wlj

This is computationally expensive if all data points are used for the gradient estimation.
In a network with a nonlinear activation yk(x

n) = f(ak) = f
(∑d

i=1Wkiϕi(x
n)
)
the error derivative gets:

∂En(W )

∂Wli
= f ′(al)

(
yl(x

n)− tnl
)
ϕj(x

n)

In a logistic neural network:
f(a) = σ(a) σ′(a) = σ(a)

(
1− σ(a)

)
13.3. Multi-Layer Neural Networks

Multi-layer neural networks have input and output layers like the single-layer networks, but contain so-called
hidden layers which lie in between the input and output layers. An example network is shown in figure 13.2,
which also has multiple output nodes. Neural networks that have more than one hidden layer are called deep
neural networks.
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Figure 13.2.: Neural Network: Multi-Layer

In a network with just one hidden layer the output computes as

yk(x) = f (2)

 h∑
i=0

W
(2)
ki f (1)

(
d∑

j=0

W
(1)
ij xj

)
︸ ︷︷ ︸

zi


The function f (k) is the activation function for the k-th layer (the output layer counts as a layer). The hidden
layer may have an arbitrary number of nodes h.
A multi-layer network (also called multi-layer perceptron) is calculated as

yk(x) = f (N)

 hN−1∑
iN−1=0

W
(N)
kiN−1

f (N−1)

 hN−2∑
iN−2=0

W
(N−1)
iN−1iN−2

f (N−2)

 · · · f (2)

 h∑
i1=0

W
(2)
i2i1

f (1)

 d∑
i0=0

W
(1)
i1i0

xi0







A multi-layer network can be seen as a machine that builds features on top of features.

13.3.1. One hidden Layer?

The universal function approximation theorem says that one hidden layer can represent every function
arbitrarily accurate (Cybenko/Hornik). But this needs and exponential number of units (neurons)! Instead,
multiple layers allow a similar effect with much less units.

13.3.2. Model Type and Model Class

Model Type The model type is the choice of the nonlinear parametric model. It is determined by:
• Choice of topology: How are the neural layers connected and how many neurons per layer?
• Choice of neural elements: How is the neuron modeled?

Widely talking, everything in ML is a neural network, maybe with just one layer and one activation function.

• Feedforward neural networks are acyclic directed graphs.
– Multi-layer perceptrons are fully connected, while
– Convolutional networks are smartly pruned with weight-sharing.

• Recurrent neural networks are cyclic directed graphs with internal states.
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Model Class The model class is the number of hidden neurons and the number of layers.

13.4. Output Neurons, Activation and Loss Functions

13.4.1. Output Neurons

The type of the problem determines the type of the output neurons, all having probabilistic interpretations:

• Linear for regression:

f(z) = z p(y |x) = N (y | z, σ2I)

• Sigmoid for (two-class) classification:

f(z) = σ(z) ≡ 1

1 + e−z
p(y | z) = σ(z)y

(
1− σ(z)

)1−y

• Categorical Distribution/Softmax for multi-class classification:

fi(z) =
ezi∑n
j=1 e

zj
≡ p(y = i | z)

13.4.2. Loss Functions

Just like the type of the output neuron is linked to the problem, is the loss function linked to the problem:

• Regression
– Linear output =⇒ Squared loss

• Classification
– Linear output =⇒ Hinge loss
– Sigmoid =⇒ Nonlinear log-likelihood

• Multi-Class Classification
– Softmax =⇒ Nonlinear log-likelihood

All these are derivable from maximum likelihood.

13.4.3. Activation Functions

• Hidden neurons may be chosen freely, because it is unknown what they actually do (but the derivative
controls how much of a rule a neuron plays in learning).

• All the technical choices remain voodoo and depend on intuition.

• There are best practices and heuristics which one to choose.
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Figure 13.3.: Sigmoid σ(z)
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Figure 13.4.: Sigmoid tanh(z)

Sigmoid

Figure 13.3 shows the sigmoid.

f(z) = σ(z) f ′(z) = σ(z)
(
1− σ(z)

)
Problem: The derivative is zero almost everywhere, causing a zero gradient during backpropagation and may
stop learning.

Hyperbolic Tangent

Figure 13.4 shows the hyperbolic tangent.

f(z) = tanh(z) f ′(z) = 1− tanh2(z)

123



−3 −2 −1 1 2 3

0.5

1

1.5

2

2.5

z

a

Figure 13.5.: Rectified Linear Unit ReLU max(0, z)

Rectified Linear Unit (ReLU)

Figure 13.5 shows the rectified linear unit.

f(z) = max(0, z) f ′(z) =

{
1 iff z > 0

0 iff z < 0

Problem: A bad initialization of the parameters can lead to a zero gradient. In practice, initialize the bias to a
positive value.

13.5. Forward- and Backpropagation

• Forward propagation computes the activations for each layer, the outputs for each layer and the resulting
loss function.

• Backward propagation computes the contribution of each parameter to the loss (the gradient) and
updates the parameters using gradient descent.

13.5.1. Backpropagation

• Backpropagation, also known as backprop, calculates the gradient with the chain rule.

• Problems in multi-layer networks:
– Non-convex, many local optima
– Might get stuck in a poor local optima
– The design of a working backpropagation algorithm is quite complex, causing the second winter of

ML between 2000 and 2014.

• But these methods work very well!
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Example In a simple neural network with no hidden layer and just one neuron per layer, the derivative for
the bias ∂L

∂b computes as
∂L

∂b
=

∂L

∂ŷ

∂ŷ

∂a1

∂a1
∂z0

∂z0
∂a0

∂a0
∂b

The computations for the weight matrix ∂L
∂W are similar

Skip Connections

• For parameters that are closer to the input, the gradient needs to flow from the loss to those parameters.

• In very deep neural networks, the application of the chain rule may lead to a zero gradient, causing no
learning to happen.

• One solution is to use skip connections to “jump” over layers.

13.5.2. Formulas

Notice that the loss function is not always squared error, so the derivative of the loss function might change.
Let yd be the desired output.

Forwardpropagation

L(yd,y) =
1

2
(yd − y)T (yd − y)

y = Ŵn

[
aT
n 1

]
an = fn−1(zn−1)

zn−1 = Ŵn−1

[
aT
n−1 1

]
an−1 = fn−2(zn−2)

zn−2 = Ŵn−2

[
aT
n−2 1

]
...

a2 = f1(z1)

z1 = Ŵ1

[
aT
1 1

]
a1 = x
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Backpropagation

dL = −(yd − y)T dy

dy = Wn dan

dan = f ′
n−1(zn−1) dzn−1

dzn−1 = Wn−1 dan−1

dan−1 = f ′
n−2(zn−2) dzn−2

dzn−2 = Wn−2 dan−2

...
da2 = f ′

1(z1) dz1

dz1 = W1 da1

da1 = dx
So dL can be computes as

dL = −(yd − y)T

(
K+1∏
k=n

Wkf
′
k−1(zk−1)

)
dzK

for all layers K ∈ { 1, 2, · · · , n }.

Vectorized

13.5.3. Approximating the Gradient

Instead of calculating backpropagation, the gradient can also be estimated using the finite differences for
changes in each parameter Wj:

∂L

∂wj
≈ L(w + εuj)− L(w)

ε

where ε is a small perturbation and uj is a unit vector in the j direction.
But, for a network with M parameters, forward propagation has to be done M times! This is very costly for

large networks.
Backpropagation can compute the derivatives by forwardpropagate and backpropagate each one time, no

matter how many parameters.

13.6. Gradient Descent

The basic update rule for gradient descent is
Ŵ k+1 = Ŵ k − α∇WL

with the learning rate α and the gradient ∇WL from backpropagation.
The key question are:
• How to update W?
• How to choose α?
• How to initialize W?
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13.6.1. When to update W?

• Full Gradient Descent
– Use the whole training set at once.
– This is expensive for large data sets.

∇WJ =
1

n

n∑
i=1

∇WL(xi,yi,W )

• Stochastic Gradient Descent
– Use one data point of the training set.
– Needs an adaptive learning rate ηt with∑∞

t=1 ηt =∞ and∑∞
t=1 η

2
t <∞.

– The gradient estimation has a high variance.

∇WJ ≈ ∇WL(xi,yi,W )

• Mini-Batch Gradient Descent
– Use a subset of the training set.

∇WJ ≈ 1

k

k∑
i=1

∇WL(xi,yi,W )

• The collected data can introduce a strong bias in successive data samples, so the data must be shuffled
before applying stochastic or mini-batch gradient descent. This way, the bias can be reduced (but not
removed).

• Nowadays, the usage of the term stochastic gradient descent refers to mini-batch gradient descent.

13.6.2. Adaptive Learning Rate

• A very high learning can increase the loss a lot, while a too low learning rate causes the algorithm to
run long until convergence.

• Finding the right learning rate is pretty hard.

• Adaptive learning rates that change over time can help as the learning rate should be higher in flat
regions, but small in valleys (to not “jump out”).

Momentum

Insight

• Running Average

m̄0 = 0, m̄k+1 = γkm̄k + (1− γk)mk

• Geometric Average (constant γ)
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m̄k+1 = (1− γ)

k∑
i=1

γk−imi

• Arithmetic Average (γk = k−1
k )

m̄k+1 =
1

k

k∑
i=1

mi

Practically Applied to momentum terms with M0 = 0:

Mk+1 = γkMk + (1− γk)∇WJ(Wk)

Wk+1 = Wk − αkMk+1

Adadelta

Insight Take large steps in plateaus as they do not have much risk and take smaller steps in steep areas.

Practically Normalize by the running average of the gradient norm with a small ε to prevent from dividing
by zero, V0 = 0 and the Hadamard product ⊙:

Gk = ∇WJ(Wk)

Vk+1 = γVk + (1− γ)Gk ⊙Gk

Wk+1,ij = Wk+1,ij −
αk√

Vk,ij + ε
Gk,ij

Note There exist two versions: One with the ε in and out of the square root, but both in the fraction.

Adam

Insight Combine momentum term with Adagrad.

Practically Just combine both equations:

Gk = ∇WJ(Wk)

Vk+1 = γ1Vk + (1− γ1)Gk ⊙Gk

Mk+1 = γ2Mk + (1− γ2)Gk

Wk+1,ij = Wk+1,ij −
αk√

ηγk
1
Vk,ij + ε

ηγk
1
Mk+1,ij

The initialization V0 = M0 = 0 leads to an underestimation fixed by ηγk
i
= 1

1−γk
i

. With γ1 = 0.9, γ2 = 0.999

and ε = 10−8, Adam is not too sensitive to parameter changes.

Note Adam violates the convergence guarantees. . .
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13.6.3. Small Neural Networks

For small neural networks, there exist better methods to get the direction of descent. But these are all too
expensive for big networks.

Hessian Approaches

• Get second-order descent with δw = H−1∇J and the Hessian H = ∇2J .

• Estimate the Hessian with BFGS method.

• Use line search instead of a fixed learning rate.

Conjugate Gradient

• Momentum term with variable learning rate, e.g.

δwt = ∇J(wt) +
∥∇J(wt)∥2

∥∇J(wt−1)∥2
δwt

with Powell restarts.

• Problem: Does not work well with stochastic gradient descent.

Levenberg-Marquart Linearize the network

f(xi,w) = f(xi, b) +∇wf(xi, b)
∣∣T
w=b

δw = fi0 + Jiδw

and solve the least squares regression problem

J ≈ 1

2
∥y − (f0 + Jδw)∥2 + 1

2
δwTWδw

yielding δw = (JTJ +W )−1JT
i (y − f0)

• This is basically the Gauss-Newton-Method.

• Levenberg W = λI keeps the matrix invertible

• Marquardt W = λdiag(JTJ)

• Adadelta approximates Levenbergs method parameterwise.

13.6.4. Initialization

Random Initialization

• Can lead to problems in gradient descent.

• For instance, large absolute values cause problems with sigmoid and negative values cause problems
with ReLU.
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Gaussian Initialization

• Draw the parameters from a Gaussian: Wkij ∼ N (0,m−1), bk ∼ N (0, 1)

• This basically normalizes the parameters.

Xavier/Normalized Initialization Initialize the weights from a uniform distribution (where ni is the number
of neurons in the i-th layer and Wj are the parameters of the layer connecting the hidden layer j and the next
hidden layer j + 1):

Wj ∼ U

[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
Note: Xavier assumes that the activation functions are symmetric and linear around zero, so this works for
tanh or sigmoid, but not for ReLU!

13.7. Overfitting

• Neural networks have hundreds, thousands or millions of parameters.

• But in most cases, no datasets with such many samples are available.

• So neural networks are prone to overfit.

• Overfitting can be fought with an algorithmic realization of a prior on the parameters:
– Regularization
– Early stopping

Stop the training when the validation error starts rising again.
– Input noise augmentation
Adding noise ϵi to the inputs reduces the chance of overfitting x̃i = xi + ϵi.

– Dropout
Focus efficiently on the relevant neurons and prune others by zeroing out the weights intermittently
and letting a subset of neurons predict:

ai = fi(z)di with di ∈ { 0, 1 } and p(di = 1) = pdropout = 0.5

– Weight decay
A ridge loss J(w) = L(w) + λwTw yields weight decay:

wk+1 = wk − αk

(
∇wL(wk) + λwk

)
= (1− αk)wk + αk∇wL(wk)

13.7.1. Batch Normalization

• Covariate shift
– Changes in the input distribution make learning hard.
– This is especially problematic with mini-batches.
– Hidden values change as their preceding layers change.
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• This can be fought by batch normalization:

x̃i =
xi − µi√
σ2
i + ϵ

– This is like dropout with better performance.
– Similar to normalization in ridge regression.
– More complex: removal of batch normalization.

13.8. Theoretical Results

• The features are learned rather than hand-crafted by the machine learner.

• More layers capture more invariances.

• More data is needed to train deeper networks.

• More computation power (e.g. on GPUs).

• Better regularization methods like dropout.

• New nonlinearities: max pooling, ReLU

• However, the understanding of what deep networks really so remains shallow.

• Theory Fields
– Approximation, depth width and invariance theory
– Generalization and regularization theory

13.9. Other Network Architectures

13.9.1. Convolutional Neural Network (CNN)

• Convolutional neural networks (CNNs) are particularly suited for feature extraction in spatially correlated
data like images.

• Feature maps are computed by applying convolutional kernels to the input or feature maps.

• Pooling reduces the dimensionality. For instance, max_pooling(k) takes the pixels with the largest values
among k neighboring pixels.

• Instead of computing the pre-activation of a layer with a matrix, use a convolution operation:

s(t) = (x ∗ w)(t) =
∫

x(a)w (t− a) da

where x is the input signal and w is often called the kernel.

• This acts as a filter on the input.
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Fully Connected vs. Convolutional

• Fully Connected
– With high dimensional input data the number of parameters explodes (gray image with 1000x1000

pixels, hidden layer with 1000 neurons has 1 billion parameters, just for the first layer).
– Does not extract local features which are usually present in images.

• Convolutional
– The learned parameters are the kernel weights which are much smaller than the input and shared

over the whole input.
– Computes local features since the output of a kernel involves a computation over adjacent pixels.

13.9.2. Recurrent Neural Network (RNN)

• Recurrent neural networks (RNNs) are networks with memory where the output is fed into the input
again.

• This can be used for time dependent/series data:
– Natural language processing
– Speech recognition
– Dynamical systems
– Stock market
– Brain-computer interface
– etc.

13.9.3. Long Short-Term Memory Network (LSTM)

• Gradient computation in RNNs is done with backpropagation through time (BPTT). A parameter is
updates by adding all contributions to the loss over time.

• This leads to vanishing and exploding gradients.
• Long short-term memory networks (LSTMs) fight the gradient problems with a different architecture

to let the gradient flow better in BPTT and are thus capable of more efficient learning than traditional
RNNs.

13.10. Applications

13.10.1. Computer Vision

13.10.2. Autonomous Systems

13.11. Radial Basis Function Networks

A multi-layer perceptron uses univariate projections to span the space of data.
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• Pros
– Universal function approximation
– Large range generalization (extrapolation)
– Good for high dimensional data

• Cons
– Hard to train
– Danger of interference

Radial basis function networks (RBFNs) use a different approach:
• Only one hidden layer
• Use spatially localized kernels for learning (note: there are basis functions that are not spatially localized).
• They use radial basis functions as activation functions, i.e. functions ϕ(∥x− c∥

) that only depend on
the norm of some data x around some center c, e.g. the Gaussian kernel (note that k is the iteration of
gradient descent):

ϕ(x,xk) = exp

{
− (x− ck)

TD(x− xk)

2

}
with some positive definite D.

• The “output layer” then is just a linear regression y =
∑k

i=1wiϕ(x,xk) = wRΦϕ(x,xk)

• They often need regularization (e.g. ridge regression). The non-ridge case with squares loss yields the
solution

w = (ΦTΦ)−1ΦT t

with t =
[
t1 · · · tn

]T and Φ =

ϕ11 · · · ϕ1m
... . . . · · ·

ϕn1 · · · ϕnm

.
• The “input layer” can be optimized using gradient descent w.r.t. the distance metric and the center of

the RBFs.
• Gradient descent can make D non-positive definite =⇒ use Cholesky decomposition.
• An iterative procedure is needed for optimization, i.e. alternately update of w and xk and Dk.
• Summarized, RBFs are powerful and efficient for learning, but the number of RBFs and the hyperparam-

eter optimization is important and difficult!
• Theoretical remark: Poggio and Girosi (1990) showed that RBF networks arise naturally fromminimizing

the penalized cost function

J =
1

2

∑
n

(
tn − y(xn)

)2
+

1

2
γ

∫ ∣∣G(x)
∣∣2 dx

with, e.g. G(x) = ∂2y
∂x2 , a smoothless prior.
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13.12. Wrap-Up

• Neural networks and the relation to the brain

• Building of stacks of features

• Why one network layer is enough but impractical

• Forward and backwardpropagation

• Different ways of gradient descent
– Full, stochastic, mini-batch
– Speedup via learning rate adaption
– Initialization of parameters

• Overfitting causes and defenses

• CNNs for spatially correlated data

• LSTMs for time series data

• RBF networks
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14. Support Vector Machines

All machine learning is generally about lowering the structural risk bound in the true risk:

R(w) ≤ Remp(w) + ϵ(N, p∗, h)

where N is the number of samples, p∗ is the probability that the bound is met and h is the VC-dimension.

• Classical machine learning algorithms keep ϵ(N, p∗, h) constant and try to minimize Remp(w). The
confidence interval is fixed by keeping some model parameters fixed, e.g. the number of neurons on a
neural network.

• Support vector machines keepRemp(x) constant andminimize ϵ(N, p∗, h). With separable data,Remp(x) =
0. The confidence interval is controlled by changing the VC-dimension (“capacity control”).

14.1. Linear SVMs

• Use linear classifiers.

• Approximate implementation of the structural risk minimization principle.

• If the data is linearly separable, the empirical risk of the SVM will be zero and the risk bound will be
approximately minimized.

• SVMs have built-in “guaranteed” generalization abilities.

Assuming linearly separable data and given N sample training points {xi, yi }Ni=1 with xi ∈ Rd and
yi ∈ {−1,+1 }. The there exist a hyperplane y(x) = wTx+ b that separates the data. Intuitively, the “correct”
hyperplane is the hyperplane with the maximum distance to the data of each class (called the margin). So the
goal is to maximize this margin to minimize the VC-dimension.
Formally, this makes sense given the key result from Vapnik: If the data points lie in a sphere of radius R,
∥xi∥ < R and the margin of the linear classifier in d dimensions is γ, then

h ≤ min

{
d,

⌈
2R2

γ2

⌉}

So maximizing the margin lowers the upper bound on the VC-dimension!

Example Figure 14.1 shows a linear support vector machine working on a linear separable dataset with
marked support vectors and the margin.
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Figure 14.1.: Linear Support Vector Machine
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14.1.1. Optimization Formulation

Find a hyperplane that separates the data linearly
yi(w

Txi + b) ≥ 1 ∀i

and enforce yi(w
Txi + b) = 1 for at least one data point. The data points lie directly on the margin and are

called support vectors.
The distance to the hyperplane is

y(xi)

∥w∥
=

wTxi + b

∥w∥
so the margin is 1

∥w∥ .
As maximizing the margin 1

∥w∥ is equivalent to minimize ∥w∥2, the problem can be formulated as a quadratic
minimization problem with linear constraints:

argmin
w,b

J(w, b) =
1

2
∥w∥2

s.t. yi(w
Txi + b)− 1 ≥ 0 ∀i

This yields the Lagrangian formulation:

L(w, b,α) =
1

2
∥w∥2 −

N∑
i=1

αi

(
yi(w

Txi + b)− 1
)

Taking the derivative w.r.t. w and b yields:

∂L(w, b,α)

∂w

!
= 0 =⇒ w =

N∑
i=1

αiyixi

∂L(w, b,α)

∂b

!
= 0 =⇒

N∑
i=1

αiyi = 0

So the separating hyperplane is a linear combination of the input data. But the αi are still unknown.

Dual Formulation

First rewrite the Lagrangian and then insert the equations 14.1.1 and 14.1.1 to get the dual:

L(w, b,α) =
1

2
∥w∥2 −

N∑
i=1

αi

(
yi(w

Txi + b)− 1
)

=
1

2
∥w∥2 −

N∑
i=1

αiyiw
Txi − b

N∑
i=1

αiyi +

N∑
i=1

αi

Using∑N
i=1 αiyi = 0:

=⇒ L̂(w,α) =
1

2
∥w∥2 −

N∑
i=1

αiyiw
Txi +

N∑
i=1

αi
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Using w =
∑N

i=1 αiyixi:

=
1

2
∥w∥2 −

N∑
i=1

N∑
j=1

αiαjyiyj
(
xT
j xi

)
+

N∑
i=1

αi

=
1

2
wTw −

N∑
i=1

N∑
j=1

αiαjyiyj
(
xT
j xi

)
+

N∑
i=1

αi

=⇒ L̃(α) =
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj −

N∑
i=1

N∑
j=1

αiαjyiyj
(
xT
j xi

)
+

N∑
i=1

αi

=
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
xT
j xi

)
The last equation 14.1.1 is called the Wolfe dual formulation.

The original problem can now be solved by maximizing the dual function L̃:

argmin
α

L̃(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
xT
j xi

)
s.t. αi ≥ 0 ∀i

N∑
i=1

αiyi = 0

As almost all αi ≈ 0, the separating hyperplane is given by NS support vectors

w =

NS∑
i=1

αiyixi

The offset b can also be computed, but the derivation is skipped here:

b =
1

NS

Ns∑
i=1

(
yi −

NS∑
j=1

αjyj
(
xTx

))

• Both the original (primal) SVM formulation and the dual rare quadratic optimization problems with
linear constraints, called quadratic programming problems. These are convex and have a unique optima
that can easily be compute, e.g. with libraries like cvxopt.

• The dual form is especially useful for nonlinear SVMs!

14.1.2. Sparsity

• Almost all αi are roughly zero, so there are only a few support vectors.
• As the hyperplane was written as

w =

N∑
i=1

αyixi
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it can be described by only a few data points.

• So by once calculating the support vectors, the SVM is described by only a few vectors that do not take
up much memory/storage!

14.2. Nonlinear SVMs

Nonlinear SVMs are more powerful by using a feature transformation

x ∈ Rd ϕ : Rd → H

into a (possible higher-dimensional) feature space H. The hyperplane is then written in this feature space,
yielding a linear classifier in H

wTϕ(x) + b = 0

But in Rd, the classifier is nonlinear and thus can separate nonlinear data. This is the same trick as in
least-squares regression: Make the data linear separable rather than building a complex nonlinear classifier.

14.2.1. Optimization Formulation

The nonlinear dual form (with nonlinear transformations) can be obtained as

argmin
α

L̃(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
ϕ(xj)

Tϕ(xi)
)

s.t. αi ≥ 0 ∀i
N∑
i=1

αiyi = 0

where the actual feature transformation ϕ(xi) only appears in scalar products with another ϕ(xj).
Also the discriminant function y(x) = wTϕ(x) + b can be written by just scalar products of the feature

transformations (using w =
∑NS

i=1 αiyiϕ(xi)):

y(x) = wTϕ(x) + b =

NS∑
i=1

αiyi
(
ϕ(xi)

Tϕ(x)
)
+ b

This leads to the kernel trick.

14.2.2. Kernel Trick

As both the dual and the discriminant function can be written in terms of the scalar product of the features,
only this has to be calculated. The kernel trick replaces every occurrence of the scalar product with a kernel
function

K(xi,xj) = ϕ(xi)
Tϕ(xj)

So if a function can be found that is equivalent to this scalar product, the mapping into a higher-dimensional
features space can be avoided. This even means the feature space can be infinity-dimensional!
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Polynomial Kernel

A polynomial kernel K(x,y) = (xTy)d of degree d is the kernel for a feature transformation into the space of
all ordered monomials of degree d. The transformed space H then has the dimensionality

dim(H) =

(
d+N − 1

d

)
where N is the dimension of the untransformed input space. The classifier then has the VC-dimension
dim(H) + 1.

Example: d = 2 For d = 2, the kernel becomes
K(x,y) = (xTy)2 = x21y

2
1 + 2x1x2y1y2 + y21y

2
2

which is equivalent to the scalar product

ϕ(x)Tϕ(y) =

 x21√
2x1x2
x22

T  y21√
2y1y2
y22

 = x21y
2
1 + 2x1x2y1y2 + x22y

2
2

Radial Basis Function Kernel (RBF)

K(x,y) = exp

{
− ∥x− y∥2

2σ2

}
• Measures the similarity between x and y.
• Construct an infinite-dimensional feature space H so that the hyperplane also has infinity VC-dimension.
• If the radius σ of the kernel is chosen too low, every data point has its “own” kernel, leading to massive

overfitting. So the radius has to be bound to limit the VC-dimension.

Mercer’s Condition

To check whether a kernel really is a kernel, Mercer’s condition can be used: A function K(x,y) is a valid
kernel, if for every g(x) with a converging integral ∫ g(x)2 dx <∞ it holds that∫∫

K(x,y) g(x) g(y) dx dy ≥ 0

These kernels are known to satisfy Mercer’s condition:
• Inhomogeneous polynomial kernel:

K(x,y) = (xTy + c)d

• Gaussian RBF kernel:

K(x,y) = exp{−∥x− y∥2

2σ2
}

• Hyperbolic tangent kernel:
K(x,y) = tanh

(
axTy + b

)
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Constructing Kernels

• Intuition: A kernel measures the similarity of two data points in the transformed space.
• The construction of a kernel most always be done by finding a feature transformation and encoding it in

a kernel.
• The notion of similarity can also be encoded in the kernel function directly.
• Also, kernels can be combined with a few simple rules. Let K1(x,y) and K2(x,y) are valid kernels,

then all of the following are also valid kernels:

cK1(x,y)

K1(x,y) +K2(x,y)

K1(x,y)K2(x,y)

f(x)K2(x,y) f(y)

· · ·

14.3. Non-Separable Data

If the data is not separable, there are multiple solutions:
1. Simple solution: Transform the data points into a higher dimensional feature space so that they become

linearly separable. But this leads to a high VC-dimension and is prone to overfit.
2. Better solution: Let some data point allow to violate the margin.

14.3.1. Slack Variables

Introduce slack variables ξi ≥ 0 that, instead of requiring perfect linearly separable with

yi(w
Txi + b) ≥ 1

allow small violations from perfect separation:

yi(w
Txi + b) ≥ 1− ξi

This allows the data points to be off by ξi from the margin.
Even if the data is separable, it may be good to introduce slack variable for an occasional penalty.

Optimization Formulation

This changes the optimization problem to:

argmin
w,b

J(w, b) =
1

2
∥w∥2 + C

N∑
i=1

ξi

s.t. yi(w
Txi + b)− 1 + ξi ≥ 0 ∀i

ξi ≥ 0 ∀i
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with the weight C specifying the tradeoff that is made. A larger C allows more violations.
This introduces a box constraint 0 ≤ αi ≤ C to the dual formulation:

argmin
α

L̃(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
ϕ(xj)

Tϕ(xi)
)

s.t. 0 ≤ αi ≤ C ∀i
N∑
i=1

αiyi = 0

This is also a quadratic programming problem and thus can be solved efficiently.

14.3.2. Lack of Sparseness

• If there is a large class overlap, SVMs may need many support vectors.

• This reduces the sparsity.

• Alternative: Relevant vector machines (RVMs)
– Probabilistic alternative to SVMs.
– Gives much sparser results.
– But no notion of margin maximization.

14.4. Applications

14.4.1. Text Classification

• Problem: Classify document into a number of categories.

• The text is represented using word statistics, i.e. histograms of the frequency.
– Count how often every word occurs and ignore their order (“bag of words”).
– Very high-dimensional feature space (roughly 10 000 dimensions).
– Very few features that are not relevant (thus it is not feasible to apply dimensionality reduction).

• SVMs are doing really well on this problem.

14.4.2. Handwritten Digit Classification

14.4.3. Support Vector Regression

SVMs may also be adapted to regression tasks, but this does not work very well.
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14.5. Wrap-Up

• Main idea of SVMs

• Reason for maximizing the margin

• Translation of the SVM problem into an quadratic programming problem

• Interpretation of the support vectors

• Using SVMs for non-linearly separable data

• Kernel trick

• Construction of kernels

• Formulation of SVMs with slack variables
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A. Self-Test Questions

The text below also contains answers for the self-test questions! To prevent you from reading the answers
accidentally, the questions start on a new page after the demo questions.

A.1. Demo

In what case can you toggle the visibility of the answers?

Answer If my PDF viewer supports it.

In what case can you definitely not toggle the visibilities of the answers?

Answer If I have printed the document.
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A.2. Organization

What are some of Machine Learning applications?

Answer For example natural language processing and autonomous driving.

When can we benefit from using Machine Learning methods?

Answer Machine learning can be helpful if the problem is too hard to program by hand (e.g. image
recognition and natural language processing).

What are the different types of learning?

Answer

• Supervised: Given labeled data (input/output pairs).

• Unsupervised Given unlabeled data (only input).

• Semi-Supervised: Given some labeled and some unlabeled data.

• Reinforcement Learning: No data given.

What is the difference between classification and regression? Can you give some examples of both tasks
(and identify the domain and codomain)?

Answer

• Classification sorts data into discrete classes. A sample use case is the recognition of hand-written digits.
The domain are images and the codomain are the number from zero to one.

• Regression maps data onto a continuous output space and is able to extrapolate missing data. A sample
use case is the analysis and prediction of weather. The domain are date or date-times and the codomain
may be the temperature.

What are the challenges when solving a Machine Learning problem?

Answer

• Generalization: The learned function should generalize and work for new data and not only for the
training data, called

• Overfitting: The algorithm just “memorized” the learning data and cannot handle other (new) data.

• Features: Choosing the right features is hard but important.

• Curse of dimensionality: Too high-dimensional features cause problems.
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What is generalization? What is overfitting?

Answer Overfitting is quite the opposite of generalization. If an algorithm overfits, it just memorizes the
training data and is not capable of handling new data. If it is, the function ha generalized.

A.3. Linear Algebra Refresher

Remember vectors and what you can do with them.

Answer Yeah I do remember.

Remember matrices and what you can do with them.

Answer Yeah I do remember.

What is a projection? How do you use it?

Answer N/A

How to compute the inverse of a matrix?

Answer One method is the Gaussian algorithm: You write the identity matrix to the right and the given
matrix to the left and then transform both matrices in parallel until the identity matrix is on the left. Then the
inverse is on the right.

What are Eigenvalues and Eigenvectors?

Answer The eigenvectors of a matrix are those (non-trivial) vectors that do not get rotated but only scaled
when multiplied by the matrix. The corresponding eigenvalue of an eigenvector is the factor it gets scaled by.

What is a change of basis? What is a linear transformation? Are they the same?

Answer N/A

A.4. Statistics Refresher

What is a random variable?

Answer A random variable is a variable that can have multiple values that, if randomly sampled, follow a
specific probability distribution.

What is a distribution?
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Answer A probability distribution defines the probability that the value of a random variable falls into a
specific region or has a specific value. It maps all possible values of the domain onto a probability between 0
and 1.

What is a Binomial distribution?

Answer The binomial distribution Bin(k |N,µ) is the probability that in N trials with the singular proba-
bility µ exactly k trials have been a success.

How does a Poisson distribution relate to Binomial distributions?

Answer The Poisson distribution is the Binomial distribution with N →∞.

What is a Gaussian distribution?

Answer The Gaussian distribution is the most common probability distribution and has some neat proper-
ties, e.g. that the sum of N →∞ random i.i.d. variables is Gaussian distributed. Its density function is given
as

N (x |µ, σ2) =
1√
2πσ2

exp

{
− (x− µ)2

2σ2

}

What is an expectation?

Answer The expectation value E(X) of a random variable X is the value that the random variable has in
the mean. For continuous distributions with probability density p(x), the expectation value is given as

E(X) =

∫ ∞

−∞
xp(x) dx

What is a joint distribution?

Answer A joint distribution p(x1, · · · , xn) of n random variables is the probability that the tuple of
both numbers fall into any particular range of set of values. For independent variables the distribution is
p(x, y) = p(x) p(y)

What is a conditional distribution?

Answer The conditional distribution p(x | y) is the probability of x given that y is true. It is given as

f(x | y) = f(x, y)

f(y)

What is a distribution with a lot of information?
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Answer N/A

How to measure the difference between distributions?

Answer The difference (or similarity) between distribution can be measured using the Kullback-Leibler
divergence (KL-divergence):

KL(p ∥ q) = −
∫

p(x) ln
q(x)

p(x)
dx

A.5. Optimization Refresher

Why is optimization important for machine learning?

Answer Every machine learning problem is an optimization problem or can be reduced to be one.

What do well-formulated learning problems look like?

Answer Well-formulated problems have a cost function J(θ) that has to be minimized or maximized, given
some equality constraints f(θ) = 0 and some inequality constraints g(θ) ≥ 0. It is commonly notated like this:

argmin
θ

J(θ)

s.t. f(θ) = 0

g(θ) ≥ 0

Every minimization problem can be a maximization problem and vice versa by multiplying the cost function
with −1.

What is a convex set and what is a convex function?

Answer A convex set is a set where every point that lies on a line between any two points is also part of
the set. Similarly, for a convex function, every line that can be drawn between any two points of the function
does not cross the function. Formal: A set C ⊆ Rn is convex iff

∀x,y ∈ C : ∀α ∈ [0, 1] : αx+ (1− α)y ∈ C

and a function f : Rn → R is convex iff

∀x,y ∈ Domain(f) : ∀α ∈ [0, 1] : (αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

How do I find the maximum of a vector-valued function?

Answer Take the gradient w.r.t. to the variable, yielding a vectorial gradient. Then set each component to
zero and solve for the variable (this may be complicated due to overdetermined equation systems and similar).

How to deal with constrained optimization problems?
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Answer Formulate the Lagrangian L(θ) = J(θ) + λf(θ) + µg(θ), take the derivatives w.r.t. θ and the
Lagrangian multipliers λ and µ, set them to zero and solve for θ.

How to solve such problems numerically?

Answer One method for solving them is gradient descent, also called steepest descent. It works by
calculating the gradient and then reducing the value of θ by the gradient iteratively. For maximization, the
gradient has to be added.

A.6. Bayesian Decision Theory

How can we decide on classifying a query based on simple and general loss functions?

Answer N/A

What does “Bayes Optimal” mean?

Answer A “Bayes optimal” classifier obeys the rule that it chooses class C1 over C2 iff p(x |C1)
p(x |C2)

> p(C2)
p(C1)

.

How to deal with two or more classes?

Answer Choose class Ci iff p(x |Ci)
p(x |Cj)

>
p(Cj)
p(Ci)

∀i ̸= j.

How to deal with high dimensional feature vectors?

Answer The decision rules still apply, but the posterior probability densities p(x |Ck) have to handle
multiple features (be multivariate).

How to incorporate prior knowledge on the class distribution?

Answer This is done through the prior p(Ck) for class Ck which can be determined, e.g. by simple counting
(if and only if the sample data points are representative).

What are the equations for misclassification rate and risk?

Answer The risk can be encoded as λ(αi |Cj), which is the loss of classifying x as class Ci if Cj is the
actual class. The risk is then encoded as R(αi |x) = ECk∼p(Ck |x)

(
λ(αi |Ck)

)
=
∑

j λ(αi |Cj) p(Cj |x) which
is the expected risk for classifying x as class Ci. Then decide for the class with the lowest risk.

A.7. Probability Density Estimation

Where do we get the probability of data from?
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Answer The probability densities can be estimated if sample data is available. This problem is called
“Probability Density Estimation”.

What are parametric methods and how to obtain their parameters?

Answer Parametric models depend on distributions like Gaussians that have specific parameters (e.g. the
mean µ and the variance σ2). The values of these parameters can then by obtained by estimation, e.g. vi
maximum likelihood or maximum a-posteriori, where the last one is a Bayesian approach.

How many parameters have non-parametric methods?

Answer Non-parametric models have any number of parameters as the raw data is used as “parameters”.

What are mixture models?

Answer Mixture models are built out of multiple single probability densities. They are all added together
with a prior πi, which is the probability that a data point is samples from the i-th distribution (also called
“weight”). The general formula is p(x) = ∑i πipi(x), where πi is the prior and pi(x) is the i-th probability
density.

Should gradient methods be used for training mixture models?

Answer No, because the derivatives of these models contain cyclic dependencies on the other parameters
which makes gradient methods mostly useless and slow.

How does the EM algorithm work?

Answer Thewhole idea behind EM is tomaximize the complete log-likelihoodQ(θ, θi−1) =
∫
p(y |X, θ(i−1)) ln p(X, y | θ) dθ

in two steps:
• E-Step: Compute the probability density p(y |X, θ(i−1)) using the previously estimated (or initialized)

parameters θ(i−1).
• M-Step: Maximize the complete log-likelihood w.r.t. θ with maximum likelihood by using the values

that have been computed in the E-Step.

What is the biggest problem of mixture models?

Answer The number of components and type of components that were used to draw the samples are
typically unknown and it is (currently) impossible to determine them by an algorithm. There are some
heuristics and trial and error can be used, but no more.

A.8. Clustering and Evaluation

How can we find meaningful clusters in the data?
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Answer Cluster can be found, e.g. with mean shift clustering that starts at every data point and builds up
nets of data points that are nearby (by climbing up the gradient). Another method is, for example, k-means.

How does density estimation with mixture models relate to clustering?

Answer Mixture models can generate clustered data, this can the estimation of them yield an estimation
which pile of data was generated by which component. Thus, mixture model estimation is kind of a more
powerful clustering method as it also yields the densities.

What is the bias-variance trade-off?

Answer An estimator can typically have a low bias or a low variance, but not both.

What is a BLUE estimator?

Answer An BLUE estimator (“best linear unbiased estimator”) is an MVUE estimation that is linear in its
features. An MVUE estimation has zero bias and a minimum of variance (called “minimum variance unbiased
estimator”).

Are maximum likelihood estimators always unbiased?

Answer No, they are not. E.g. the MLE for the variance of a Gaussian is biased with Bias(σ̂2) = − 1
N σ2

where N is the number of samples and σ2 is the real variance.

What is leave on out cross-validation? What do we need it for?

Answer In LOOCV, the whole data set is used for training with the exception of one data point that is
used for testing. It is needed if not so many data is available to detect overfitting and to validate the model in
general.

A.9. Regression

What is regression (in general) and linear regression (in particular)?

Answer Regression maps an input space to a continuous output space. Linear regression depends on
function y(x) = wTϕ(x) that are linear in the parameters.

What is the cost function of regression and how can I interpret it?

Answer The cost function of regression defines the penalty for a misclassified sample (e.g. least squares).
The goal is to minimize this loss function and to have a way to get an actual value from the calculated
probability density. This loss function is then minimized w.r.t. to the regression function f(x) to get the actual
function value. For least squares, this is just mean of he probability density, thus equal to f(x).
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What is overfitting?

Answer If the regressor overfits, it perfectly goes through the data points but does not really follow the
actual function. This is due to the regressor just “memorizing” where the data points lie without generalizing.

How can I derive a Maximum-Likelihood Estimator for Regression?

Answer For MLE for regression, the given samples must be generated with some noise ϵ following some
probability distribution, e.g. Gaussian ϵ ∼ N (0, β−1). The function value then also is a random variable
y ∼ N

(
f(x), β−1

). An estimator for f(x) and the precision β can then be derived by using the typical ML
approach (take the derivative of the log-likelihood, set it to zero).

Why are Bayesian methods important?

Answer Bayesian methods allow to tame overfitting by putting a prior on the parameters, thus generating
a probability distribution over the parameters. This gives much better and more accurate results.

What is MAP and how is it different to full Bayesian regression?

Answer MAP is like the ML approach to regression, but instead of maximizing the likelihood, the posterior
p(w |X,y, α, β) ∝ p(y |X,w, β) p(w, α) is maximized. This allows to put a prior on the parameters and thus
regularizing the overfitting.

A.10. Classification

How do we get from Bayesian optimal decisions to discriminant functions?

Answer Discriminant functions model the class-conditional posterior that is used in Bayes decision
rule directly, e.g. y1(x) = p(C1 |x) and y2(x) = p(C2 |x) with a combined discriminant function y(x) =
y1(x)− y2(x). Then decide for class C1 iff y(x) > 0 and for class C2 iff y(x) < 0, this is equivalent the Bayes
optimal decision rule.

How to derive a discriminant function from a probability distribution?

Answer Given class-conditional posteriors p(C1 |x) and p(C2 |x), a discriminant function can be derived
as y(x) = p(C1 |x)− p(C2 |x) and similar if only the likelihood and the prior are given (the normalization
term can be abandoned as its the same for both distributions, like in Bayes decision like).

How to deal with more than two classes?

Answer Build each discriminant function yi(x) to formulate how strong the classifiers believes in that
class. Then decide for class Ci iff yi(x) > yj(x) for all i ̸= qj.
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What does “linearly separable” mean?

Answer Intuitively, a line (or hyperplane) can be drawn through all data points while perfectly separating
them (one class on the one side and the other on the other).

What is Fisher discriminant analysis? How does it relate to regression?

Answer Fisher’s discriminant analysis finds a projection through the data points where the data points
then can be separated by a decision boundary (which is not given by Fisher’s discriminant analysis). This
projection is similar to regression as it also finds a “line” through the data.

Is Fisher’s linear discriminant Bayes optimal?

Answer Yes, if the classes have equal and diagonal class-conditional likelihood covariance matrices.

What are perceptrons? How can we train them?

Answer Perceptrons are simple neural networks, typically with no hidden layer and just one output
neuron. The basic perceptron (no hidden layer, one output neuron with the sign-“activation function”) is
trained using the perceptron algorithm which is a version of gradient descent with the gradients “inserted”.

What is logistic regression? How can be derive the parameter update rule?

Answer Logistic regression formulates the class-conditional posterior as p(C1 |x) = σ(a) where it assumes
that a is given by some linear discriminant function a = wTx+ w0. The parameter update rule can then be
derived by applying maximum likelihood estimation and then to gradient descent.

A.11. Linear Dimensionality Reduction and Statistical Learning Theory

What does dimensionality reduction mean?

Answer The goal is to find a dimensionD ≪ N that is lower than the original dimension N , e.g. to reduce
the computation cost in kernel regression (where a D ×D matrix has to be inverted) or to visualize the data.

What is PCA? What are the three things that it does?

Answer Principal component analysis (PCA) finds the principal components of the data. That is, it finds
the directions in which the variance is the highest and finds how high the variance is in this directions. It also
finds the so-called “explained variance”, the amount of variance a component direction explains.

What are the roles of Eigenvectors and Eigenvalues in PCA?
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Answer The eigenvectors are the principal components and the corresponding eigenvalues encode how
much variance is explained in that direction.

Can you describe applications of PCA?

Answer PCA can be used to decompose images of faces into lower dimensions, change some parameters
and then project it back into the original feature space. This can be used to morph images, e.g. to make them
more masculine or feminine.

What does risk in statistical learning theory mean?

Answer “Risk” is the expectation of misclassifying a sample, which indirectly encodes the generalization
abilities of an estimation. If the risk is high, it seems to overfit.

How is the true risk different from the empirical risk?

Answer The true risk depends on the underlying probability density via an integral over all data points
and cannot be calculated directly, but is the real point of interest. The empirical risk applies the loss function
onto some sample data points, giving an estimator for the true risk.

What is the learning power of a function approximator?

Answer The learning power expresses how much “capacity” an approximator has. The more learning
power an approximator has, the more accurate can the approximations be, but this can also lead to overfitting.

What is expressed by a VC-Dimension?

Answer The VC-dimension specifies how much data points can be scattered by a function (or family of
functions). For hyperplanes (linear functions), the VC-dimension is always dim(H)+1, whereH is the feature
space.

Is the VC-Dimension always correlated with the number of parameters?

Answer No it is not, a counter example is the function

f(x,w) = g
(
sin(w1x+ w0)

)
g(x) =

{
+1 iff x > 0

−1 iff x ≤ 0

which has only two parameters but an infinite VC-dimension.

A.12. Neural Networks

How does logistic regression relate to neural networks?
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Answer A NN with no hidden layer and just one output neuron equals logistic regression if the output
layer has sigmoid as the activation function.

How do neural networks relate to the brain?

Answer The brain is made up of neurons that are connected with each other, grouped in so-called “sheets”.
Every neuron takes inputs from the previous sheet and “fires” if the “value” is above some threshold.

What kind of functions can single layer neural networks learn?

Answer Assuming this means “a single hidden layer”, it can learn an arbitrary function, but the number
of parameters are growing exponentially!

Why do two layers help? How many layers do you need to represent arbitrary functions?

Answer Two layers help to reduce the number of parameters needed to approximate a function, which
eases the learning. Theoretically, one hidden layer is enough to represent arbitrary functions.

Why were neural networks abandoned in the 1970s, and later in the 1990s? Why did neural networks
re-awaken in the 2010s?

Answer They were abandoned in the 1970s because of a book noticing that things like the perceptron
do not work for simple nonlinear separable data like the XOR. In the 1990s they were abandoned because
kernels were much better for optimization. In the 2010s, the big shift from too less data to too many data
made them come back as now there is enough data to train such a network.

What output layer and loss function to use given the task (regression, classification)?

Answer

• Regression
– Activation function: Linear
– Loss function: Squared loss

• Classification
– Activation function: Sigmoid for two-class and softmax for multi-class
– Loss function: Nonlinear log-likelihood or cross-entropy

Why use a ReLU activation instead of a sigmoid?

Answer With sigmoid, nearly all regions of the gradient are zero, causing the learning to stop once it
reaches that point. In ReLU, only the negative site has a zero gradient, causing the learning to progress
better. But the success of ReLU highly depends on the initial weights. A negative initialization can cause
“ReLU-networks” to not start to learn.
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Derive the equations for forward and backwarpropagation for a simple network.

Answer Given a simple network with one hidden layer, an input and an output layer, all with just one
neuron, the output computes as:

y = f2(w2f1(w1x1 + b1) + b2)

or stepwise:

y = f2(a2)

a2 = w2z1 + b2

z1 = f1(a1)

a1 = w1x+ b1

Take the derivative of the loss w.r.t. w1 to get the first gradient:
∂L

∂w1
= L′(y)

∂y

∂w1

∂y

∂w1
= f ′

2(a2)
∂a2
∂w1

∂a2
∂w1

= w2
∂z1
∂w1

∂z1
∂w1

= f ′
1(a1)

∂a1
∂w1

∂a1
∂w1

= x

or more beautiful:
∂y

∂w1
=

∂L

∂y

∂y

∂a2

∂a2
∂z1

∂z1
∂a1

∂a1
∂w1

and w.r.t. w2 to get the second:
∂L

∂w2
= L′(y)

∂y

∂w2

∂y

∂w2
= f ′

2(a2)
∂a2
∂w2

∂a2
∂w2

= z1

or more beautiful:
∂L

∂w2
=

∂L

∂y

∂y

∂a2

∂a2
∂w2

What is mini-batch gradient descent? Why use it instead of SGD or full gradient descent?

Answer Mini-batch gradient descent uses a subset of the samples for training (another one each iteration),
thus reduces the computation cost which is the reason why to use it instead of full gradient descent. Stochastic
gradient descent has a much higher variance thus is slow and leads to the parameters “jumping” around.

Why neural networks can overfit and what are the options to prevent it?
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Answer Typically, a neural network has much more parameters than training data is available which makes
it easy for the net to just memorize the data. Some of the options to prevent overfitting are regularization,
early stopping (step when the validation error rises again), input noise augmentation (apply some noise to
the input), dropout (randomly prune some neurons and train all others).

A.13. Support Vector Machines

How did learning theory motivate support vector machines?

Answer The typical machine learning algorithms try to minimize the empirical risk to lower an upper
bound on the true risk. SVMs minimize the confidence interval ϵ(N, p∗, h) to lower the boundary by minimizing
the VC-dimension.

What does maximum margin separation mean?

Answer The distance of the decision boundary between the classes to the nearest data points to that
decision boundary is called margin. This margin is maximized to generalize as much as possible. Intuition: A
decision boundary that is close to one of the classes, but far away from the others seems to not fit as well as a
decision boundary that lies directly in the center of the classes, thus maximizing the margin to both classes.

Why did the SVM-craze drown the Neural-Networks-craze?

Answer Neural networks seem to be too hard to train/optimize, while kernel methods (like in kernel
SVMs) are much easier to compute (especially because of quadratic programming). This caused the 2nd from
1994 in neural networks.

What is a Kernel?

Answer A kernel K(x, y) is a function that is equivalent to the scalar product of feature transformations
Φ(·), so K(x, y) = ϕ(x)Tϕ(y) holds. If such a feature transformation only appears in scalar products, the
kernel trick can be used to replace the products with a much easier computable kernel that can even represent
feature transformations into an infinite feature space!

How can I build Kernels from Kernels?

Answer Kernels K1(x, y) and K2(x, y) can be combined, so all of the following are also valid kernels:

cK1(x, y)

K1(x, y) +K2(x, y)

K1(x, y)K2(x, y)

f(x)K1(x, y) f(y)

What functions does the Radial Basis Function Kernel contain?
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Answer N/A

How does support vector regression work?

Answer N/A

A.14. Kernel Regression and Gaussian Processes

Why kernel methods for regression?

Answer Using kernel regression, the regression can work entirely in the feature space and can even
consider infinite dimensional feature spaces. Also many other algorithms can be derived from the dual
formulation of regression.

How do you get from radial basis functions to kernels?

Answer N/A

What is the role of the two pseudo-inverses in kernel regression?

Answer N/A

Why are kernel regression methods very computationally expensive?

Answer Because they have to invert an N ×N matrix, where N is the number of sample data points.

Why is kernel regression the dual to linear regression?

Answer By formulating the dual of linear regression, it can be found that the feature transformations ϕ(·)
only appear in scalar product, thus allowing the kernel trick which is then called kernel regression.

What is the major advantage of GPs over Kernel Ridge Regression?

Answer Gaussian processes can also gauge the uncertainty of the estimate.

Why are GPs a Bayesian approach?

Answer Gaussian processes are Bayesian methods because they involve the construction of a prior distri-
bution.

What principle allowed deriving GPs from a Bayesian regression point of view?

Answer N/A
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